Reputation: 563
I'm doing some Linux kernel development, and I'm trying to use Netbeans. Despite declared support for Make-based C projects, I cannot create a fully functional Netbeans project. This is despite compiling having Netbeans analyze a kernel binary that was compiled with full debugging information. Problems include:
I'm wondering if anyone has had success with setting up Netbeans for Linux kernel development, and if so, what settings they used. Ultimately, I'm looking for Netbeans to be able to either parse the Makefile (preferred) or extract the debug information from the binary (less desirable, since this can significantly slow down compilation), and automatically determine which files are actually compiled and which macros are actually defined. Then, based on this, I would like to be able to find the definitions of any data structure, variable, function, etc. and have complete auto-completion.
Let me preface this question with some points:
SO's useful "Related Questions" feature has informed me that the following question is related: https://stackoverflow.com/questions/149321/what-ide-would-be-good-for-linux-kernel-driver-development. Upon reading it, the question is more of a comparison between IDE's, whereas I'm looking for how to set-up a particular IDE. Even so, the user Wade Mealing seems to have some expertise in working with Eclipse on this kind of development, so I would certainly appreciate his (and of course all of your) answers.
Cheers
Upvotes: 7
Views: 11478
Reputation: 628
The Eclipse wiki has a page about this: HowTo use the CDT to navigate Linux kernel source
Upvotes: 1
Reputation: 6613
I previously wrote up an answer. Now I come up with all the details of the solution and would like to share it. Unfortunately stackoverflow does not allow me to edit the previous answer. So I write it up in this new answer.
It involves a few steps.
[1] The first step is to modify linux scripts to leave dep files in. By default after using them in the build, those dep files are removed. Those dep files contains exact dependency information about which other files a C file depends. We need them to create a list of all the files involved in a build. Thus, modify files under linux-x.y.z/scripts to make them not to remove the dep files like this:
linux-3.1.2/scripts
Kbuild.include: echo do_not_rm1 rm -f $(depfile);
Makefile.build: echo do_not_rm2 rm -f $(depfile);
The other steps are detailed in my github code project file https://github.com/minghuascode/Nbk/blob/master/note-nbkparse. Roughly you do:
[2] Configure with your method of configuration, but be sure use "O=" option to build the obj files into a separate directory.
[3] Then use the same "O=" option and "V=1" option to build linux, and save make output into a file.
[4] Run my nbkparse script from the above github project. It does: [4.1] Read in the make log file, and the dep files. Generate a mirroring command. [4.2] Run the mirroring command to hard-link the relevant source files into a separate tree, and generate a make-log file for NetBeans to use.
Now create a NetBeans C project using the mirrored source tree and the generated log file. NetBeans should be able to resolve all the kernel symbols. And you will only see the files involved in the build.
Upvotes: 2
Reputation: 328
I found this link very helpful in setting up proper indexing in Eclipse. It requires running a script to alter Eclipse environment to match your kernel options, in my case
$ autoconf-to-eclipse.py ./include/generated/autoconf.h .
An illustrated guide to indexing the linux kernel in eclipse
Upvotes: 0
Reputation: 1
I think this would work (done each step for various projects):
[1] Modify kernel build scripts to leave .d files. By default they are removed. [2] Log the build process to a file. [3] Write a script to parse the build log. [3.1] From the build log, you know every .c files. [3.2] From the .c file, you know which is the corresponding .d file. [3.3] Look into .d files to find out all the included .h files. [3.4] Form a complete .c and .h file list. [4] Now create a new dir, and use "ln -s" or "ln" to pick files of interest.
Now, create a Netbeans project for existing source code in the [4]. Configure code assistance to use make-log file. You should see exactly the effective source code as when you build it at [2].
Some explanations to the above steps:
At [2], do a real build so the log file contains the exact files and flags of interest. Later netbeans will be able to use the exact flags to parse.
At [4], pick only the files you want to see. Incorporating the whole kernel tree into netbeans will be unpractical.
There is a trick to parsing .d files: Many of the depended items are not real paths to a .h file, they are a modified entry for part of the linux config sections in the auto config file. You may need to reverse the modification to figure out which is the real header file.
Actually there is a topic on netbeans site. This is the discussion url: http://forums.netbeans.org/ntopic3075.html . And there is a wiki page linked from the discussion: wiki.netbeans.org/CNDLinuxKernel . Basically it asks you to prefix make with CFLAGS="-g3 -gdwarf-2" .
Upvotes: 0
Reputation: 64424
Eclipse seems to be pretty popular for Linux kernel development:
Upvotes: 4
Reputation: 5925
I have been doing some embedded linux development. Including kernel module development and have imported the entire linux kernel source code into Eclipse, as a separate project. I have been building the kernel itself outside of Eclipse(so far), but I don't any reason why I shouldn't be able to set up the build environment within Eclipse to build the kernel. For my projects, as long as I setup the PATH properties to point to the appropriate linux source include directories, it seems to be pretty good about name completion for struct fields, etc.
I can't really comment, on if it is picking up the correct defines and not greying out the correspond sections, as I haven't really paid to much attention to the files within the kernel itself.(so far)
I was also wondering about using Netbeans as a linux 'C' IDE, as I do prefer Netbean's for Java GUI development.
Upvotes: 0