Reputation: 5006
Ok, I think I have understood the whole async/await thing. Whenever you await something, the function you're running returns, allowing the current thread to do something else while the async function completes. The advantage is that you don't start a new thread.
This is not that hard to understand as it's somewhat how Node.JS works, except Node uses alot of callbacks to make this happen. This is where I fail to understand the advantage however.
The socket class doesn't currently have any Async methods (that work with async/await). I can of course pass a socket to the stream class, and use the async methods there, however this leaves a problem with the accepting of new sockets.
There are two ways of doing this, as far as I know. In both cases I accept new sockets in an infinite loop on the main thread. In the first case I can start a new task for every socket that I accept, and run the stream.ReceiveAsync within that task. However, won't an await actually block that task, since the task will have nothing else to do? Which again will result in more threads spawned on the threadpool, which again is no better than using synchronous methods inside a task?
My second option is to put all accepted sockets in one of several lists (one list per thread), and inside those threads run a loop, running await stream.ReceiveAsync for every socket. This way, whenever i run into await, stream.ReceiveAsync and start receiving from all other sockets.
I guess my real question is if this is in any way more effective than a threadpool, and in the first case, if it really will be worse than just using the APM methods.
I also know you can wrap APM methods into functions using await/async, but the way I see it, you still get the "disadvantage" of APM methods, with the extra overhead of state machines in async/await.
Upvotes: 2
Views: 1686
Reputation: 456322
This is not that hard to understand as it's somewhat how Node.JS works, except Node uses alot of callbacks to make this happen. This is where I fail to understand the advantage however.
Node.js does use callbacks, but it has one other significant facet that really simplifies those callbacks: they are all serialized to the same thread. So when you're looking at asynchronous callbacks in .NET, you're usually dealing with multithreading as well as asynchronous programming (except for EAP-style callbacks).
Asynchronous programming using callbacks is called "continuation-passing style" (CPS). It's the only real option for Node.js but is one of many options on .NET. In particular, CPS code can get extremely complex and difficult to maintain, so the async
/await
compiler transform was introduced so you could write "normal-looking" code and the compiler would translate it to CPS for you.
In both cases I accept new sockets in an infinite loop on the main thread.
If you're writing a server, then yes, somewhere you will be repeatedly accepting new client connections. Also, you should be continuously reading from each connected socket, so each socket also has a loop.
In the first case I can start a new task for every socket that I accept, and run the stream.ReceiveAsync within that task.
You wouldn't need a new task. That's the whole point of asynchronous programming.
My second option is to put all accepted sockets in one of several lists (one list per thread), and inside those threads run a loop, running await stream.ReceiveAsync for every socket.
I'm not sure why you'd need multiple threads, or any dedicated threads at all.
You seem a bit confused on how async
and await
work. I recommend reading my own introduction, the MSDN overview, the Task-Based Asynchronous Pattern guidance, and the async
FAQ, in that order.
I also know you can wrap APM methods into functions using await/async, but the way I see it, you still get the "disadvantage" of APM methods, with the extra overhead of state machines in async/await.
I'm not sure what disadvantage you're referring to. The overhead of state machines, while non-zero, is negligible in the face of socket I/O.
If you're looking to do socket I/O, you have several options. For reads, you can either do them in an "infinite" loop using APM or Task
wrappers around the APM or Async methods. Alternatively, you could convert them into a stream-like abstraction using Rx or TPL Dataflow.
Another option is a library I wrote a few years ago called Nito.Async. It provides EAP-style (event-based) sockets that handle all the thread marshaling for you, so you end up with something simpler like Node.js. Of course, like Node.js, this simplicity means it won't scale as well as a more complex solution.
Upvotes: 2
Reputation: 1062510
The async socket API is not based around Task[<T>]
, so it isn't directly usable from async
/await
- but you can bridge that fairly easily - for example (completely untested):
public class AsyncSocketWrapper : IDisposable
{
public void Dispose()
{
var tmp = socket;
socket = null;
if(tmp != null) tmp.Dispose();
}
public AsyncSocketWrapper(Socket socket)
{
this.socket = socket;
args = new SocketAsyncEventArgs();
args.Completed += args_Completed;
}
void args_Completed(object sender, SocketAsyncEventArgs e)
{
// might want to switch on e.LastOperation
var source = (TaskCompletionSource<int>)e.UserToken;
if (ShouldSetResult(source, args)) source.TrySetResult(args.BytesTransferred);
}
private Socket socket;
private readonly SocketAsyncEventArgs args;
public Task<int> ReceiveAsync(byte[] buffer, int offset, int count)
{
TaskCompletionSource<int> source = new TaskCompletionSource<int>();
try
{
args.SetBuffer(buffer, offset, count);
args.UserToken = source;
if (!socket.ReceiveAsync(args))
{
if (ShouldSetResult(source, args))
{
return Task.FromResult(args.BytesTransferred);
}
}
}
catch (Exception ex)
{
source.TrySetException(ex);
}
return source.Task;
}
static bool ShouldSetResult<T>(TaskCompletionSource<T> source, SocketAsyncEventArgs args)
{
if (args.SocketError == SocketError.Success) return true;
var ex = new InvalidOperationException(args.SocketError.ToString());
source.TrySetException(ex);
return false;
}
}
Note: you should probably avoid running the receives in a loop - I would advise making each socket responsible for pumping itself as it receives data. The only thing you need a loop for is to periodically sweep for zombies, since not all socket deaths are detectable.
Note also that the raw async socket API is perfectly usable without Task[<T>]
- I use that extensively. While await
may have uses here, it is not essential.
Upvotes: 3