Reputation: 961
I am basically building a 3D scatter plot using primitive UV spheres and am running into memory issues when attempting to create more than a couple hundred points at one time. I am limited on my laptop with a 2.1Ghz processor but wanted to know if there is a better way to write this:
import bpy
import random
while count < 5:
bpy.ops.mesh.primitive_uv_sphere_add(size=.3,\
location=(random.randint(-9,9), random.randint(-9,9),\
random.randint(-9,9)), rotation=(0,0,0))
count += 1
I realize that with such a simple script any performance increase is likely negligible but wanted to give it a shot anyway.
Upvotes: 1
Views: 753
Reputation: 336
Some possible suggestions
bpy.ops.object.duplicate_move(OBJECT_OT_duplicate=(linked:false, TRANSFORM_OT_translate=(transform)
Edit:
Doing further research it appears each time a bpy.ops.* is called the redraw function . One user documentented exponential increase in time taken to genenerate UV sphere.
CoDEmanX provided the following code snippet to another user.
import bpy
bpy.ops.object.select_all(action='DESELECT')
bpy.ops.mesh.primitive_uv_sphere_add()
sphere = bpy.context.object
for i in range(-1000, 1000, 2):
ob = sphere.copy()
ob.location.y = i
#ob.data = sphere.data.copy() # uncomment this, if you want full copies and no linked duplicates
bpy.context.scene.objects.link(ob)
bpy.context.scene.update()
Then it is just a case of adapting the code to set the object locations
obj.location = location_dict[i]
Upvotes: 2