Reputation: 494
I'm using Matlab 2010 in my ubuntu 12.04 on a x86 computer, and g++ 4.6.3. this is how I do the production and the inputs:
#include <Src/Tools/Math/Matrix_nxn.h>
#include <iostream>
using namespace std;
int main()
{
Matrix_nxn<double,4> A1,A2,Tb,aa;
A1[0][0] = 0.99958087959447828; A1[0][1] = 1.7725781974830023e-18;A1[0][2] = 0.028949354900049871; A1[0][3] = 0;
A1[1][0] = -0.028949354900049871; A1[1][1] = 6.1204654815537932e-17;A1[1][2] = 0.99958087959447828; A1[1][3] = 0;
A1[2][0] = 0, A1[2][1] = -1; A1[2][2] = 6.1230317691118863e-17;A1[2][3] = 0.21129000000000001;
A1[3][0] = 0, A1[3][1] = 0; A1[3][2] = 0; A1[3][3] = 1;
A2[0][0] = 0.90634806393366396; A2[0][1] = -0.42253187690835708;A2[0][2] = 0;A2[0][3] = 0;
A2[1][0] = 0.42253187690835708; A2[1][1] = 0.90634806393366396; A2[1][2] = 0;A2[1][3] = 0;
A2[2][0] = 0; A2[2][1] = 0; A2[2][2] = 1;A2[2][3] = 0;
A2[3][0] = 0; A2[3][1] = 0; A2[3][2] = 0;A2[3][3] = 1;
Tb[0][0] = 0.99956387949834924; Tb[0][1] = -0.00016363183229951183; Tb[0][2] = -0.029530052943282908; Tb[0][3] = 0;
Tb[1][0] = 0; Tb[1][1] = 0.99998464792303143; Tb[1][2] = -0.0055411116439683869;Tb[1][3] = 0;
Tb[2][0] = 0.029530506297888514;Tb[2][1] = 0.0055386950515785164; Tb[2][2] = 0.99954853411673616; Tb[2][3] = 0;
Tb[3][0] = 0; Tb[3][1] = 0; Tb[3][2] = 0; Tb[3][3] = 1;
aa = Tb*A1*A2;
cout.precision(25);
cout <<aa[0][0]<<' '<<aa[0][1]<<' '<<aa[0][2]<<' '<<aa[0][3]<<endl
<<aa[1][0]<<' '<<aa[1][1]<<' '<<aa[1][2]<<' '<<aa[1][3]<<endl
<<aa[2][0]<<' '<<aa[2][1]<<' '<<aa[2][2]<<' '<<aa[2][3]<<endl
<<aa[3][0]<<' '<<aa[3][1]<<' '<<aa[3][2]<<' '<<aa[3][3]<<endl;
}
and this is the definition of operator*
:
Matrix_nxn<T, N> res;
size_t i, j, k;
for (i = 0; i < N; ++i)
{
for (j = 0; j < N; ++j)
{
for (k = 0; k < N; ++k)
{
res[i][j] += m1[i][k] * m2[k][j];
}
if (MVTools::isNearInf(res[i][j]))
{
if (MVTools::isNearPosInf(res[i][j]))
throw MVException(MVException::PosInfValue);
else
throw MVException(MVException::NegInfValue);
}
}
}
return res;
The weird thing is I make the same matrices with same values inside Matlab and I get different results. Here's the Matlab code:
Tb = [0.99956387949834924,-0.00016363183229951183,-0.029530052943282908,0;0,0.99998464792303143,-0.0055411116439683869,0;0.029530506297888514,0.0055386950515785164,0.99954853411673616,0;0,0,0,1];
A1 = [0.99958087959447828,1.7725781974830023e-18,0.028949354900049871,0;-0.028949354900049871,6.1204654815537932e-17,0.99958087959447828,0;0,-1,6.1230317691118863e-17,0.21129000000000001;0,0,0,1];
A2 = [0.90634806393366396,-0.42253187690835708,0,0;0.42253187690835708,0.90634806393366396,0,0;0,0,1,0;0,0,0,1];
aa = Tb*A1*A2;
aa - aaa
ans =
1.0e-16 *
0 -0.555111512312578 0 0
0 0 0 0
0 0 0 0
0 0 0 0
while aaa is the output of c++ implementation. I know that the error is so little but I want to know what causes the problem! I want to debug lot of code and I need zero differences for good debugging.
Upvotes: 0
Views: 332
Reputation: 16263
The reason for the different value (however insignificant it might be) is that the algorithms used by matlab and you are not the same.
Your algorithm is simple O(N^3)
matrix multiplication. There are special algorithms for matrices of small size to be computed efficiently, as well as complicated algorithms that have better asymptotic behaviour than O(N^3)
.
If you're interested, see:
Upvotes: 2
Reputation: 7996
I see you expect 25 digits precision from the C++ code. This is very unlikely using the double
type. You can get a better precision using long double
but maybe not as musch as 25 digits.
See: What is the precision of long double in C++?
Upvotes: 1