Reputation: 319
I'm struggling with Euler Problem 12. I do not want the answer or exact code changes that'll get me there. I'm just looking to be pointed in the right direction. I ran this code for about 10 minutes and came up with an answer which was incorrect. This leads me to believe that my assumption that a triangle number with > 500 divisors would not have any factors > 10000 is incorrect. I'm thinking I need to use a faster prime generator AND get the program to stop iterating through lists so much. I am not sure how to do the latter.
def eratosthenes_sieve(limit):
primes = {}
listofprimes = []
for i in range(2, limit + 1):
primes[i] = True
for i in primes:
factors = range(i, limit + 1, i)
for f in factors[1:limit + 1]:
primes[f] = False
for i in primes:
if primes[i] == True:
listofprimes.append(i)
return listofprimes
def prime_factorization(n):
global primal
prime_factors = {}
for i in primal:
if n < i:
i = primal[0]
if n % i == 0:
if i not in prime_factors.keys():
prime_factors[i] = 1
else:
prime_factors[i] += 1
n = n / i
if n in primal:
if n not in prime_factors.keys():
prime_factors[n] = 1
else:
prime_factors[n] += 1
return prime_factors
return prime_factors
def divisor_function(input):
x = 1
for exp in input.values():
x *= exp + 1
return x
def triangle(th):
terms = []
for each in range(1, th+1):
terms.append(each)
return sum(terms)
z = 1
primal = eratosthenes_sieve(10000)
found = False
while found == False:
triz = triangle(z)
number_of_divisors = divisor_function(prime_factorization(triz))
if number_of_divisors > 300:
print "GETTING CLOSE!! ********************************"
if number_of_divisors > 400:
print "SUPER DUPER CLOSE!!! *********************************************************"
if number_of_divisors < 501:
print "Nope. Not %s...Only has %s divisors." % (triz, number_of_divisors)
z += 1
else:
found = True
print "We found it!"
print "The first triangle number with over 500 divisors is %s!" % triangle(z)
Upvotes: 3
Views: 120
Reputation: 319
Of course I figure it out minutes after posting.
In my prime_factorization function.
if n % i == 0: should have been while n % i == 0.
That was causing the program to miss factors and run through the entire list of primes.
Upvotes: 1