Reputation: 15
I've done quite a bit of searching and haven't been able to find a satisfactory answer so far, so I'm sorry if this question has already been raised.
I'm stuck on how to sum over the dimensions of an array. I have array A(w0,lambda,2048,2048), and I would like to be able to define a second array U(w0, 2048, 2048) which is composed of the sum of A over dimension lambda.
So far I have been defining both A and U as follows:
A = zeros(length(w0),length(lambda),2048,2048);
U = zeros(length(w0),2048,2048);
for ii = 1:length(w0) % Scan through spot sizes
for aa = 1:length(lambda) % Scan through wavelengths
A(ii,aa,:,:) = ASM(w0(ii),lambda(aa),z1,z2);
end
U(ii,:,:) = sum(A,2);
end
Where ASM is just a function. z1 and z2 are defined earlier, and not relevant here.
I have been trying to come up with other possible ways of finding U(w0,2048,2048) as the sum over the second dimension of A (lambda), but haven't been successful...
Thanks for any pointers, and sorry again if this has already been resolved!
James.
Upvotes: 0
Views: 1943
Reputation: 548
Try using 'sum' function with a dimension argument, and collapse result on the desired dimensions.
z = rand(2,3,2,2);
q = sum(z,2); %sum all 3 matrices of size 2x2x2 to get 2x1x2x2 result
zz = q(:,1,:,:); %zz is now 2x2x2, by collapsing the dimension 2.
Upvotes: 0
Reputation: 272752
From the sounds of it, you just want:
U = squeeze(sum(A, 2));
squeeze()
eliminates singleton dimensions.
Here are two alternative solutions:
U = reshape(sum(A, 2), [length(w0) 2048 2048]);
or:
U = sum(A, 2);
U = U(:, 1, :, :);
Upvotes: 1