Reputation: 2509
One of my classes does a lot of aggregate calculating on a collection of objects, then assigns an attribute and value appropriate to the specific object: I.e.
class Team(object):
def __init__(self, name): # updated for typo in code, added self
self.name = name
class LeagueDetails(object):
def __init__(self): # added for clarity, corrected another typo
self.team_list = [Team('name'), ...]
self.calculate_league_standings() # added for clarity
def calculate_league_standings(self):
# calculate standings as a team_place_dict
for team in self.team_list:
team.place = team_place_dict[team.name] # a new team attribute
I know, as long as the calculate_league_standings
has been run, every team has team.place
. What I would like to be able to do is to scan the code for class Team(object)
and read all the attributes, both created by class methods and also created by external methods which operate on class objects. I am getting a little sick of typing for p in dir(team): print p
just to see what the attribute names are. I could define a bunch of blank attributes
in the Team __init__
. E.g.
class Team(object):
def __init__(self, name): # updated for typo in code, added self
self.name = name
self.place = None # dummy attribute, but recognizable when the code is scanned
It seems redundant to have calculate_league_standings
return team._place
and then add
@property
def place(self): return self._place
I know I could comment a list of attributes at the top class Team
, which is the obvious solution, but I feel like there has to be a best practice here, something pythonic and elegant here.
Upvotes: 0
Views: 161
Reputation: 32429
If I half understand your question, you want to keep track of which attributes of an instance have been added after initialization. If this is the case, you could use something like this:
#! /usr/bin/python3.2
def trackable (cls):
cls._tracked = {}
oSetter = cls.__setattr__
def setter (self, k, v):
try: self.initialized
except: return oSetter (self, k, v)
try: self.k
except:
if not self in self.__class__._tracked:
self.__class__._tracked [self] = []
self.__class__._tracked [self].append (k)
return oSetter (self, k, v)
cls.__setattr__ = setter
oInit = cls.__init__
def init (self, *args, **kwargs):
o = oInit (self, *args, **kwargs)
self.initialized = 42
return o
cls.__init__ = init
oGetter = cls.__getattribute__
def getter (self, k):
if k == 'tracked': return self.__class__._tracked [self]
return oGetter (self, k)
cls.__getattribute__ = getter
return cls
@trackable
class Team:
def __init__ (self, name, region):
self.name = name
self.region = region
#set name and region during initialization
t = Team ('A', 'EU')
#set rank and ELO outside (hence trackable)
#in your "aggregate" functions
t.rank = 4 # a new team attribute
t.ELO = 14 # a new team attribute
#see witch attributes have been created after initialization
print (t.tracked)
If I did not understand the question, please do specify which part I got wrong.
Upvotes: 1
Reputation: 3613
Due to Python's dynamic nature, I don't believe there is a general answer to your question. An attribute of an instance can be set in many ways, including pure assignment, setattr()
, and writes to __dict__
. Writing a tool to statically analyze Python code and correctly determine all possible attributes of an class by analyzing all these methods would be very difficult.
In your specific case, as the programmer you know that class Team
will have a place attribute in many instances, so you can decide to be explicit and write its constructor like so:
class Team(object):
def __init__(name ,place=None):
self.name = name
self.place = place
I would say there is no need to define a property of a simple attribute, unless you wanted side effects or derivations to happen at read or write time.
Upvotes: 1