Reputation: 2060
So if I had the numbers [1,2,2,3] and I want k=2 partitions I'd have [1][2,2,3], [1,2][2,3], [2,2][1,3], [2][1,2,3], [3][1,2,2], etc.
Upvotes: 3
Views: 1493
Reputation: 131
Python solution:
pip install PartitionSets
Then:
import partitionsets.partition
filter(lambda x: len(x) == k, partitionsets.partition.Partition(arr))
The PartitionSets implementation seems to be pretty fast however it's a pity you can't pass number of partitions as an argument, so you need to filter your k-set partitions from all subset partitions.
You may also want to look at: similar topic on researchgate.
Upvotes: 0
Reputation: 23955
Here's a version in Haskell:
import Data.List (nub, sort, permutations)
parts 0 = []
parts n = nub $ map sort $ [n] : [x:xs | x <- [1..n`div`2], xs <- parts(n - x)]
partition [] ys result = sort $ map sort result
partition (x:xs) ys result =
partition xs (drop x ys) (result ++ [take x ys])
partitions xs k =
let variations = filter (\x -> length x == k) $ parts (length xs)
in nub $ concat $ map (\x -> mapVariation x (nub $ permutations xs)) variations
where mapVariation variation = map (\x -> partition variation x [])
OUTPUT:
*Main> partitions [1,2,2,3] 2
[[[1],[2,2,3]],[[1,2,3],[2]],[[1,2,2],[3]],[[1,2],[2,3]],[[1,3],[2,2]]]
Upvotes: 0
Reputation: 10841
user3569's solution at Code Review produces five 2-tuples for the test case below, instead of exclusively 3-tuples. However, removing the frozenset()
call for the returned tuples leads to the code returning exclusively 3-tuples. The revised code is as follows:
from itertools import chain, combinations
def subsets(arr):
""" Note this only returns non empty subsets of arr"""
return chain(*[combinations(arr,i + 1) for i,a in enumerate(arr)])
def k_subset(arr, k):
s_arr = sorted(arr)
return set([i for i in combinations(subsets(arr),k)
if sorted(chain(*i)) == s_arr])
s = k_subset([2,2,2,2,3,3,5],3)
for ss in sorted(s):
print(len(ss)," - ",ss)
As user3569 says "it runs pretty slow, but is fairly concise".
(EDIT: see below for Knuth's solution)
The output is:
3 - ((2,), (2,), (2, 2, 3, 3, 5))
3 - ((2,), (2, 2), (2, 3, 3, 5))
3 - ((2,), (2, 2, 2), (3, 3, 5))
3 - ((2,), (2, 2, 3), (2, 3, 5))
3 - ((2,), (2, 2, 5), (2, 3, 3))
3 - ((2,), (2, 3), (2, 2, 3, 5))
3 - ((2,), (2, 3, 3), (2, 2, 5))
3 - ((2,), (2, 3, 5), (2, 2, 3))
3 - ((2,), (2, 5), (2, 2, 3, 3))
3 - ((2,), (3,), (2, 2, 2, 3, 5))
3 - ((2,), (3, 3), (2, 2, 2, 5))
3 - ((2,), (3, 5), (2, 2, 2, 3))
3 - ((2,), (5,), (2, 2, 2, 3, 3))
3 - ((2, 2), (2, 2), (3, 3, 5))
3 - ((2, 2), (2, 3), (2, 3, 5))
3 - ((2, 2), (2, 5), (2, 3, 3))
3 - ((2, 2), (3, 3), (2, 2, 5))
3 - ((2, 2), (3, 5), (2, 2, 3))
3 - ((2, 3), (2, 2), (2, 3, 5))
3 - ((2, 3), (2, 3), (2, 2, 5))
3 - ((2, 3), (2, 5), (2, 2, 3))
3 - ((2, 3), (3, 5), (2, 2, 2))
3 - ((2, 5), (2, 2), (2, 3, 3))
3 - ((2, 5), (2, 3), (2, 2, 3))
3 - ((2, 5), (3, 3), (2, 2, 2))
3 - ((3,), (2, 2), (2, 2, 3, 5))
3 - ((3,), (2, 2, 2), (2, 3, 5))
3 - ((3,), (2, 2, 3), (2, 2, 5))
3 - ((3,), (2, 2, 5), (2, 2, 3))
3 - ((3,), (2, 3), (2, 2, 2, 5))
3 - ((3,), (2, 3, 5), (2, 2, 2))
3 - ((3,), (2, 5), (2, 2, 2, 3))
3 - ((3,), (3,), (2, 2, 2, 2, 5))
3 - ((3,), (3, 5), (2, 2, 2, 2))
3 - ((3,), (5,), (2, 2, 2, 2, 3))
3 - ((5,), (2, 2), (2, 2, 3, 3))
3 - ((5,), (2, 2, 2), (2, 3, 3))
3 - ((5,), (2, 2, 3), (2, 2, 3))
3 - ((5,), (2, 3), (2, 2, 2, 3))
3 - ((5,), (2, 3, 3), (2, 2, 2))
3 - ((5,), (3, 3), (2, 2, 2, 2))
Knuth's solution, as implemented by Adeel Zafar Soomro on the same Code Review page can be called as follows if no duplicates are desired:
s = algorithm_u([2,2,2,2,3,3,5],3)
ss = set(tuple(sorted(tuple(tuple(y) for y in x) for x in s)))
I haven't timed it, but Knuth's solution is visibly faster, even for this test case.
However, it returns 63 tuples rather than the 41 returned by user3569's solution. I haven't yet gone through the output closely enough to establish which output is correct.
Upvotes: 0