Reputation: 53
I used count(case..) to group ages in sql and ended up with the following dataframe:
0-10 11-16 17-20 21-30 31-40 41-50 51-60 61-70 over70 age_unknown
60 285 161 368 476 453 247 101 62 114
I want to transpose this and add column headings 'age range' and 'number' but as far as I have been able to understand the reshape function needs headings to exist at the start, so I'm not sure how to go about this. Many thanks.
Upvotes: 1
Views: 561
Reputation: 193637
What you might be looking for is stack
. Using the data from Gavin's answer:
> stack(df)
values ind
1 60 0-10
2 285 11-16
3 161 17-20
4 368 21-30
5 476 31-40
6 453 41-50
7 247 51-60
8 101 61-70
9 62 over70
10 114 age_unknown
Upvotes: 1
Reputation: 174853
If that is a 1 row data frame like this:
df <- data.frame(matrix(c(60, 285, 161, 368, 476, 453, 247, 101, 62, 114),
nrow = 1))
names(df) <- c("0-10", "11-16", "17-20", "21-30", "31-40", "41-50",
"51-60", "61-70", "over70", "age_unknown")
df
> df
0-10 11-16 17-20 21-30 31-40 41-50 51-60 61-70 over70 age_unknown
1 60 285 161 368 476 453 247 101 62 114
Then a simple manipulation will create the data frame in the format you want:
df2 <- data.frame(age_range = names(df), number = as.numeric(df[1, ]))
df2
> df2
age_range number
1 0-10 60
2 11-16 285
3 17-20 161
4 21-30 368
5 31-40 476
6 41-50 453
7 51-60 247
8 61-70 101
9 over70 62
10 age_unknown 114
A simpler method might be to transpose df
using t()
and then fix up the result:
df3 <- t(df)
df3 <- cbind.data.frame(rownames(df3), df3)
rownames(df3) <- NULL
names(df3) <- c("age_range","number")
df3
> df3
age_range number
1 0-10 60
2 11-16 285
3 17-20 161
4 21-30 368
5 31-40 476
6 41-50 453
7 51-60 247
8 61-70 101
9 over70 62
10 age_unknown 114
> str(df3)
'data.frame': 10 obs. of 2 variables:
$ age_range: Factor w/ 10 levels "0-10","11-16",..: 1 2 3 4 5 6 7 8 10 9
$ number : num 60 285 161 368 476 453 247 101 62 114
Upvotes: 1
Reputation: 1925
If you have some continuous variable age and your desired cut points are known:
age <- rnorm(100,40,10)
cutpoints <- c(0,10,20,30,40,50,60,70,max(age))
fage <- table( cut(age, breaks=cutpoints) )
fage may in itself be all you need. But if you really want the data in a data frame:
df <- data.frame(age=names(fage), frequency=as.vector(fage))
Upvotes: 0