Reputation: 2381
I wrote following codes to get a plot of ROC for my KNN classifier:
load fisheriris;
features = meas;
featureSelcted = features;
numFeatures = size(meas,1);
%% Define ground truth
groundTruthGroup = species;
%% Construct a KNN classifier
KNNClassifierObject = ClassificationKNN.fit(featureSelcted, groundTruthGroup, 'NumNeighbors', 3, 'Distance', 'euclidean');
% Predict resubstitution response of k-nearest neighbor classifier
[KNNLabel, KNNScore] = resubPredict(KNNClassifierObject);
% Fit probabilities for scores
groundTruthNumericalLable = [ones(50,1); zeros(50,1); -1.*ones(50,1)];
[FPR, TPR, Thr, AUC, OPTROCPT] = perfcurve(groundTruthNumericalLable(:,1), KNNScore(:,1), 1);
Then we can plot the FPR vs TPR to get the ROC curve.
However, the FPR and TPR is different from what I got using my own implementation that the one above will not display all the points, actually, the codes above display only three points on the ROC. The codes I implemented will dispaly 151 points on the ROC as the size of the data is 150.
patternsKNN = [KNNScore(:,1), groundTruthNumericalLable(:,1)];
patternsKNN = sortrows(patternsKNN, -1);
groundTruthPattern = patternsKNN(:,2);
POS = cumsum(groundTruthPattern==1);
TPR = POS/sum(groundTruthPattern==1);
NEG = cumsum(groundTruthPattern==0);
FPR = NEG/sum(groundTruthPattern==0);
FPR = [0; FPR];
TPR = [0; TPR];
May I ask how to tune 'perfcurve
' to let it output all the points for the ROC? Thanks a lot.
A.
Upvotes: 3
Views: 1949
Reputation: 8520
I am not familiar with perfcurve
but have you tried using MALAB help.
in MATLAB workspace just type: help perfcurve
and you get a lot of help there.
Also on MATWORKS website there are help pages as well for example for your case take a look at:
http://www.mathworks.com/help/stats/perfcurve.html
Upvotes: 1