Reputation: 2621
'reobsmaf' is a DataFrame as below:
In [152]: reobsmaf[:5]
Out[152]:
yy mm dd count mean median min max std
2001-01 2001 1 15 76 NaN NaN NaN NaN NaN
2001-02 2001 2 15 672 5.410384 5.388889 4.111111 6.611111 0.484927
2001-03 2001 3 15 744 3.956317 3.666667 2.888889 5.555556 0.612632
2001-04 2001 4 15 720 3.685185 3.666667 3.333333 3.833333 0.118767
2001-05 2001 5 15 744 3.846550 3.833333 3.666667 4.444444 0.175195
'remodmaf' is another DataFrame as below:
In [153]: remodmaf[:5]
Out[153]:
yy mm dd count mean median min max std
2001-01 2001 1 15 75 NaN NaN NaN NaN NaN
2001-02 2001 2 15 673 NaN NaN NaN NaN NaN
2001-03 2001 3 15 745 4.508178 4.601572 3.117909 6.313059 0.925472
2001-04 2001 4 15 721 5.402154 5.510775 4.015624 5.923597 0.469602
2001-05 2001 5 15 745 5.352246 5.311082 5.104457 5.892380 0.186441
now I want to compare these two DataFrames, if which record's 'mean' value in reobsmaf equals 'nan',the record's 'mean' value in remodmaf equals 'nan' either.as below:
for i in range(len(reobsmaf)):
if str(reobsmaf['mean'][i])=='nan'
remodmaf['mean'][i]= 'nan'
it raise an exception:
DateParseError: day is out of range for month
I know it's an specific problem but I really don't know what's the problem is.
Upvotes: 1
Views: 1254
Reputation: 128948
If am reading your question correctly, you want to assign NaN in one frame where the other is Nan?
In [4]: df = pd.DataFrame(np.random.randn(8,3),columns=['A','B','C'])
In [9]: df2 = df.copy()
In [10]: df2.ix[0:3,['B','C']] = np.nan
In [11]: df2
Out[11]:
A B C
0 0.404500 NaN NaN
1 1.391802 NaN NaN
2 -0.365778 NaN NaN
3 0.693149 NaN NaN
4 0.233268 0.332789 -0.130531
5 -0.531822 1.161906 0.210007
6 -0.507082 -2.050773 -1.258930
7 0.521823 -0.331544 -0.926364
In [12]: df
Out[12]:
A B C
0 0.404500 -0.222471 0.864739
1 1.391802 -0.503080 0.307754
2 -0.365778 0.530288 -0.743119
3 0.693149 -0.749732 -1.135363
4 0.233268 0.332789 -0.130531
5 -0.531822 1.161906 0.210007
6 -0.507082 -2.050773 -1.258930
7 0.521823 -0.331544 -0.926364
This is a where operation. where df2 is nan, set df to nan
In [14]: df[pd.isnull(df2)] = np.nan
In [15]: df
Out[15]:
A B C
0 0.404500 NaN NaN
1 1.391802 NaN NaN
2 -0.365778 NaN NaN
3 0.693149 NaN NaN
4 0.233268 0.332789 -0.130531
5 -0.531822 1.161906 0.210007
6 -0.507082 -2.050773 -1.258930
7 0.521823 -0.331544 -0.926364
Upvotes: 1