Reputation: 8742
How can I call the eat and drink method of the Animal
class with the myAnimal
instance in the code?
public class Animal {
public void eat() {
System.out.println("Animal Eats");
}
public void drink() {
System.out.println("Animal Drinks");
}
}
public class Cat extends Animal {
@Override
public void eat() {
System.out.println("Cat Eats");
}
@Override
public void drink() {
System.out.println("Cat Drinks");
}
public static void main(String[] args) {
Cat myCat = new Cat();
myCat.eat();
myCat.drink();
Animal myAnimal = myCat;
myAnimal.eat();
myAnimal.drink();
}
}
Output that I am getting:
Cat Eats
Cat Drinks
Cat Eats
Cat Drinks
This is my expected output:
Cat Eats
Cat Drinks
Animal Eats
Animal Drinks
Upvotes: 59
Views: 113362
Reputation: 51
You can do what you want with a few minor changes to your code. Naturally the methods of the Animal class have been overriden and you cannot simply access them by changing the reference type. Instead, you could slightly change the definition of the eat and drink functions as follows.
class Animal{
public void eat(boolean randomBoolean){
System.out.println("Animal eats");
}
public void drink(boolean randomBoolean){
System.out.println("Animal drinks");
}
}
class Cat extends Animal{
public void eat(boolean wantOverriden){
if(wantOverriden){
boolean randomBooleanValue=true|false;
super.eat(randomBooleanValue);
}
else{
System.out.println("Cat eats");
}
}
public void drink(boolean wantOverriden){
if(wantOverriden){
boolean randomBooleanValue=true|false;
super.drink(randomBooleanValue);
}
else{
System.out.println("Cat drinks");
}
}
}
Now you should be able to access the overriden methods of the Animal class through the Cat class object by simply passing in a boolean value indicating if you want to do so ex:
Cat c=new Cat();
c.eat(false); //Indicating that you dont want to access the overriden method
c.drink(false); //Indicating that you dont want to access the overriden method
c.eat(true); //Indicating that you want to access the overriden method
c.drink(true); //Indicating that you want to access the overriden method
Upvotes: 0
Reputation: 25
You can achieve what you want using the super keyword, which allows to access the overridden method.
public class Animal {
public void eat() {
System.out.println("Animal Eats");
}
public void drink() {
System.out.println("Animal Drinks");
}
}
public class Cat extends Animal {
public void eat() {
System.out.println("Cat Eats");
}
public void drink() {
System.out.println("Cat Drinks");
}
public void printMessage(){
super.eat();
super.drink();
}
public static void main(String[] args) {
Cat myCat = new Cat();
myCat.eat();
myCat.drink();
myCat.printMessage();
}
}
Upvotes: 1
Reputation: 21
If you make methods in each class static, it should work.
public class Animal {
public static void eat() {
System.out.println("Animal Eats");
}
public static void drink() {
System.out.println("Animal Drinks");
}
}
public class Cat extends Animal {
@Override
public static void eat() {
System.out.println("Cat Eats");
}
@Override
public static void drink() {
System.out.println("Cat Drinks");
}
public static void main(String[] args) {
Cat myCat = new Cat();
myCat.eat();
myCat.drink();
Animal myAnimal = myCat;
myAnimal.eat();
myAnimal.drink();
}
}
The above code will give the following output
Cat Eats
Cat Drinks
Animal Eats
Animal Drinks
Upvotes: 2
Reputation: 333
You can create constructor for class Animal, that takes another Animas as parameter, and creates new instance based on provided one.
public class Animal {
//some common animal's properties
private int weight;
private int age;
public Animal() {
// empty.
}
public Animal(final Animal otherAnimal) {
this.weight = otherAnimal.getWeight();
this.age = otherAnimal.getAge();
}
public void eat() {
System.out.println("Animal Eats");
}
public void drink() {
System.out.println("Animal Drinks");
}
// setters and getters.
}
public class Cat extends Animal {
@Override
public void eat() {
System.out.println("Cat Eats");
}
@Override
public void drink() {
System.out.println("Cat Drinks");
}
public static void main(String[] args) {
Cat myCat = new Cat();
myCat.eat();
myCat.drink();
// note: myAnimal is not a Cat, it's just an Animal.
Animal myAnimal = new Animal(myCat);
myAnimal.eat();
myAnimal.drink();
}
}
Upvotes: 3
Reputation: 504
Cat can't stop being a cat, even if it is an animal. Cat will eat and cat will drink in a cat's way. It might be similar to what an Animal does, which is why it overrides the method. If you want it to do what the animal does by default, don't override. You could probably do some weird stuff with reflection and make separate methods that access the parent methods such as:
public void superDrink() {
Animal.class.getMethod("drink").invoke();
}
but that might be overkill don't you think?
Of course that probably wouldn't work since it's not static.
Upvotes: 0
Reputation: 131
public class Main {
public static void main(String[] args) {
Cat myCat = new Cat();
myCat.eat();
myCat.drink();
Animal myAnimal = new Animal();
myAnimal.eat();
myAnimal.drink();
}
}
public class Animal {
public void eat(){
System.out.println("Animal eat() called");
}
public void drink(){
System.out.println("Animal drink() called");
}
}
public class Cat extends Animal {
@Override
public void eat() {
System.out.println("Cat eat() called");
}
@Override
public void drink() {
System.out.println("cat drink() called");
}
}
OUTPUT:
Cat eat() called
cat drink() called
Animal eat() called
Animal drink() called
You need to create an object of the super class Animal
OR another option is to use the keyword super
in the child class methods e.g., super.eat()
or super.drink()
Upvotes: 0
Reputation: 1639
This line:
Animal myAnimal = myCat;
assigns the variable myAnimal
to the object myCat
, which you've created before. So when you call myAnimal.eat()
after that, you're actually calling the method of the original myCat object, which outputs Cat Eats
.
If you want to output Animal Eats
, you'll have to assign an Animal
instance to a variable. So if you would do this instead:
Animal myAnimal = new Animal()
the variable myAnimal will be an instance of Animal
, and thus will overwrite the previous assignment to Cat
.
If you will call myAnimal.eat()
after this, you're actually calling the eat()
method of the Animal
instance you've created, which will output Animal Eats
.
Concluding: your code should read:
public class Cat extends Animal {
@Override
public void eat() {
System.out.println("Cat Eats");
}
@Override
public void drink() {
System.out.println("Cat Drinks");
}
public static void main(String[] args) {
Cat myCat = new Cat();
myCat.eat();
myCat.drink();
Animal myAnimal = new Animal();
myAnimal.eat();
myAnimal.drink();
}
}
Upvotes: 9
Reputation: 351
Here you will have an option to choose which method do you want to invoke:
public class Cat extends Animal {
public void superEat() {
super.eat();
}
public void superDrink() {
super.drink();
}
@Override
public void eat() {
System.out.println("Cat Eats");
}
@Override
public void drink() {
System.out.println("Cat Drinks");
}
}
Upvotes: 34
Reputation: 38950
Few suggestions :
Don't pass child class reference to super class and except super class method has to be invoked for overridden method. Call super class methods from super class instance.
Animal myAnimal = new Animal();
myAnimal.eat();
If you want to call super class method from child class, explicitly call super class method name with super.methodName();
public void eat() {
super.eat();
System.out.println("Cat Eats");
}
Upvotes: 2
Reputation: 9291
This is opposite of what happens in the case of instance methods.
In case of instance methods the method of the actual class of the object is called.
class ABCD {
int x = 10;
static int y = 20;
public String getName() {
return "ABCD";
}
}
class MNOP extends ABCD {
int x = 30;
static int y = 40;
public String getName() {
return "MNOP";
}
}
public static void main(String[] args) {
System.out.println(new MNOP().x + ", " + new MNOP().y);
ABCD a = new MNOP();
System.out.println(a.x); // 10
System.out.println(a.y); // 20
System.out.println(a.getName()); // MNOP
}
In this example although the the object myCat is assigned to an Animal object reference, (Animal myAnimal = myCat
) the Actual object is of type Cat
and it behaves as it's a cat.
Hope this helps.
Upvotes: 4
Reputation: 61546
You cannot do what you want. The way polymorphism works is by doing what you are seeing.
Basically a cat always knows it is a cat and will always behave like a cat regardless of if you treat is as a Cat, Felis, Felinae, Felidae, Feliformia, Carnivora, Theria, Mammalia, Vertebrata, Chordata, Eumetazoa, Animalia, Animal, Object, or anything else :-)
Upvotes: 82
Reputation: 61546
Please don't vote on this answer... you can vote on the other one :-) This is a bad answer, but shows how you would do what you are trying to do... poorly.
public class Main
{
public static void main(final String[] argv)
{
Child child;
Parent parent;
child = new Child();
parent = child;
child.a();
parent.a();
child.otherA();
parent.otherA();
}
}
class Parent
{
public void a()
{
System.out.println("Parent.a()");
}
public void otherA()
{
// doesn't matter what goes here... really should be abstract
}
}
class Child
extends Parent
{
@Override
public void a()
{
System.out.println("Child.a()");
}
@Override
public void otherA()
{
super.a();
}
}
Upvotes: 0