Reputation: 75
I have been working on this program for quite some time. This is just two of the functions extracted that are causing a memory leak that I cant seem to debug. Any help would be fantastic!
vector<int**> garbage;
CODE for deleting the used memory
void clearMemory()
{
for(int i = 0; i < garbage.size(); i++)
{
int ** dynamicArray = garbage[i];
for( int j = 0 ; j < 100 ; j++ )
{
delete [] dynamicArray[j];
}
delete [] dynamicArray;
}
garbage.clear();
}
CODE for declaring dynamic array
void main()
{
int ** dynamicArray1 = 0;
int ** dynamicArray2 = 0;
dynamicArray1 = new int *[100] ;
dynamicArray2 = new int *[100] ;
for( int i = 0 ; i < 100 ; i++ )
{
dynamicArray1[i] = new int[100];
dynamicArray2[i] = new int[100];
}
for( int i = 0; i < 100; i++)
{
for(int j = 0; j < 100; j++)
{
dynamicArray1[i][j] = random();
}
}
//BEGIN MULTIPLICATION WITH SELF AND ASSIGN TO SECOND ARRAY
dynamicArray2 = multi(dynamicArray1); //matrix multiplication
//END MULTIPLICATION AND ASSIGNMENT
garbage.push_back(dynamicArray1);
garbage.push_back(dynamicArray2);
clearMemory();
}
Upvotes: 2
Views: 1841
Reputation: 40614
Point 1: If you have a memory leak, use valgrind
to locate it. Just like blue, I can't seem to find a memory leak in your code, but valgrind
will tell you for sure what's up with your memory.
Point 2: You are effectively creating a 2x100x100 3D array. C++ is not the right language for this kind of thing. Of course, you could use an std::vector<std::vector<std::vector<int>>>
with the obvious drawbacks. Or you can drop back to C:
int depth = 2, width = 100, height = 100;
//Allocation:
int (*threeDArray)[height][width] = malloc(depth*sizeof(*threeDArray));
//Use of the last element in the 3D array:
threeDArray[depth-1][height-1][width-1] = 42;
//Deallocation:
free(threeDArray);
Note that this is valid C, but not valid C++: The later language does not allow runtime sizes to array types, while the former supports that since C99. In this regard, C is more powerful than C++.
Upvotes: 0
Reputation: 2793
I stared at the code for some time and I can't seem to find any leak. It looks to me there's exactly one delete
for every new
, as it should be.
Nonetheless, I really wanted to say that declaring an std::vector<int**>
pretty much defies the point of using std::vector
itself.
In C++, there are very few cases when you HAVE to use pointers, and this is not one of them.
I admit it would be a pain to declare and use an std::vector<std::vector<std::vector<int>>>
but that would make sure there are no leaks in your code.
So I'd suggest you rethink your implementations in term of objects that automatically manage memory allocation.
Upvotes: 1