Jarred Morris
Jarred Morris

Reputation: 53

Multiplying two matrices in Java

I am currently developing a class to represent matrices, it represents any general mxn matrix. I have worked out addition and scalar multiplication but I am struggling to develop the multiplication of two matrices. The data of the matrix is held in a 2D array of doubles.

The method looks a little bit like this:

public Matrix multiply(Matrix A) {
    ////code
}

It will return the product matrix. This is multiplication on the right. So, if I called A.multiply(B) then it would return the matrix AB, with B on the right.

I don't yet need to worry about checking whether the multiplication is defined on the given matrices, I can assume that I will be given matrices of the correct dimensions.

Does anyone know of an easy algorithm, possibly even in pseudocode to carry out the multiplication process?

Upvotes: 2

Views: 31432

Answers (4)

Jayani Sumudini
Jayani Sumudini

Reputation: 1509

Try this code for multiple any dimensional array and print it. Think this is more simple and anyone can understand this.

public class Test {
  public static void main(String[] args) {
    int[][] array1 = {
      {1, 4, -2},
      {3, 5, -6},
      {4, 5, 2}
    };

    int[][] array2 = {
      {5, 2, 8, -1},
      {3, 6, 4, 5},
      {-2, 9, 7, -3}
    };
    Test test = new Test();
    test.printArray(test.multiplication(array1, array2));
  }

  private int[][] multiplication(int[][] array1, int[][] array2) {
    int r1, r2, c1, c2;
    r1 = array1.length;
    c1 = array1[0].length;

    r2 = array2.length;
    c2 = array2[0].length;

    int[][] result;
    if (c1 != r2) {
      System.out.println("Error!");
      result = new int[0][0];
    } else {
      result = new int[r1][c2];
      for (int i = 0; i < r1; i++) { //2
        for (int j = 0; j < c2; j++) { //4
          for (int k = 0; k < c1; k++) {
            result[i][j] += array1[i][k] * array2[k][j];
          }
        }
      }
    }
    return result;
  }

  private void printArray(int[][] array) {
    for (int[] arr : array) {
      for (int element : arr) {
        System.out.print(element + " ");
      }
      System.out.println();
    }
  }
}

Upvotes: 0

Dmytro Dzyubak
Dmytro Dzyubak

Reputation: 1642

Java. Matrix multiplication.

Here is the "code to carry out the multiplication process". Tested with matrices of different size.

public class Matrix {
  /**
   * Matrix multiplication method.
   * @param m1 Multiplicand
   * @param m2 Multiplier
   * @return Product
   */
  public static double[][] multiplyByMatrix(double[][] m1, double[][] m2) {
    int m1ColLength = m1[0].length; // m1 columns length
    int m2RowLength = m2.length;    // m2 rows length
    if (m1ColLength != m2RowLength) return null; // matrix multiplication is not possible
    int mRRowLength = m1.length;    // m result rows length
    int mRColLength = m2[0].length; // m result columns length
    double[][] mResult = new double[mRRowLength][mRColLength];
    for (int i = 0; i < mRRowLength; i++) {     // rows from m1
      for (int j = 0; j < mRColLength; j++) {   // columns from m2
        for (int k = 0; k < m1ColLength; k++) { // columns from m1
        mResult[i][j] += m1[i][k] * m2[k][j];
        }
      }
    }
    return mResult;
  }

  public static String toString(double[][] m) {
    String result = "";
    for (int i = 0; i < m.length; i++) {
      for (int j = 0; j < m[i].length; j++) {
        result += String.format("%11.2f", m[i][j]);
      }
      result += "\n";
    }
    return result;
  }

  public static void main(String[] args) {
    // #1
    double[][] multiplicand = new double[][]{
      {3, -1, 2},
      {2,  0, 1},
      {1,  2, 1}
    };
    double[][] multiplier = new double[][]{
      {2, -1, 1},
      {0, -2, 3},
      {3,  0, 1}
    };
    System.out.println("#1\n" + toString(multiplyByMatrix(multiplicand, multiplier)));
    // #2
    multiplicand = new double[][]{
      {1,  2, 0},
      {-1, 3, 1},
      {2, -2, 1}
    };
    multiplier = new double[][]{
      {2},
      {-1},
      {1}
    };
    System.out.println("#2\n" + toString(multiplyByMatrix(multiplicand, multiplier)));
    // #3
    multiplicand = new double[][]{
      {1, 2, -1},
      {0, 1,  0}
    };
    multiplier = new double[][]{
      {1, 1, 0, 0},
      {0, 2, 1, 1},
      {1, 1, 2, 2}
    };
    System.out.println("#3\n" + toString(multiplyByMatrix(multiplicand, multiplier)));
  }
}

Output:

#1
      12.00      -1.00       2.00
       7.00      -2.00       3.00
       5.00      -5.00       8.00

#2
       0.00
      -4.00
       7.00

#3
       0.00       4.00       0.00       0.00
       0.00       2.00       1.00       1.00

Upvotes: 1

Conrad Bekondo
Conrad Bekondo

Reputation: 13

In this answer, I created a class named Matrix, and another class is known as MatrixOperations which defines the various operations that can be performed on matrices (except for row operations of course). But I will extract the code for multiplication from MatrixOperations. The full project can be found on my GitHub page here.

Below is the definition of the Matrix class.

package app.matrix;

import app.matrix.util.MatrixException;

public class Matrix {

private double[][] entries;

public void setEntries(double[][] entries) {
    this.entries = entries;
}

private String name;

public double[][] getEntries() {
    return entries;
}

public String getName() {
    return name;
}

public void setName(String name) {
    this.name = name;
}

public class Dimension {
    private int rows;
    private int columns;

    public int getRows() {
        return rows;
    }

    public void setRows(int rows) {
        this.rows = rows;
    }

    public int getColumns() {
        return columns;
    }

    public void setColumns(int columns) {
        this.columns = columns;
    }

    public Dimension(int rows, int columns) {
        this.setRows(rows);
        this.setColumns(columns);
    }

    @Override
    public boolean equals(Object obj) {
        if(obj instanceof Dimension){
            return (this.getColumns() == ((Dimension) obj).getColumns()) && (this.getRows() == ((Dimension) obj).getRows());
        }
        return false;
    }
}

private Dimension dimension;

public Dimension getDimension() {
    return dimension;
}

public void setDimension(Dimension dimension) {
    this.dimension = dimension;
}

public Matrix(int dimension, String name) throws MatrixException {
    if (dimension == 0) throw new MatrixException(ZERO_UNIT_DIMENSION);
    else this.setEntries(new double[Math.abs(dimension)][Math.abs(dimension)]);
    this.setDimension(new Dimension(dimension, dimension));
    this.setName(name);
}

public Matrix(int dimensionH, int dimensionV, String name) throws MatrixException {
    if (dimensionH == 0 || dimensionV == 0) throw new MatrixException(ZERO_UNIT_DIMENSION);
    else this.setEntries(new double[Math.abs(dimensionH)][Math.abs(dimensionV)]);
    this.setDimension(new Dimension(dimensionH, dimensionV));
    this.setName(name);

}

private static final String OVERFLOW_ITEMS_MSG = "The values are too many for the matrix's specified dimensions";
private static final String ZERO_UNIT_DIMENSION = "Zero cannot be a value for a dimension";

public Matrix(int dimensionH, int dimensionV, String name, double... values) throws MatrixException {
    if (dimensionH == 0 || dimensionV == 0) throw new MatrixException(ZERO_UNIT_DIMENSION);
    else if (values.length > dimensionH * dimensionV) throw new MatrixException(Matrix.OVERFLOW_ITEMS_MSG);
    else this.setEntries(new double[Math.abs(dimensionH)][Math.abs(dimensionV)]);
    this.setDimension(new Dimension(dimensionH, dimensionV));
    this.setName(name);

    int iterator = 0;
    int j;
    for (int i = 0; i < dimensionH; i++) {
        j = 0;
        while (j < dimensionV) {
            this.entries[i][j] = values[iterator];
            j++;
            iterator++;
        }
    }
}

public Matrix(Dimension dimension) throws MatrixException {
    this(dimension.getRows(), dimension.getColumns(), null);
}

public static Matrix identityMatrix(int dim) throws MatrixException {
    if (dim == 0) throw new MatrixException(ZERO_UNIT_DIMENSION);

    double[] i = new double[dim * dim];
    int constant = dim + 1;
    for (int j = 0; j < i.length; j = j + constant) {
        i[j] = 1.0;
    }

    return new Matrix(dim, dim, null, i);
}

public String toString() {

    StringBuilder builder = new StringBuilder("Matrix \"" + (this.getName() == null ? "Null Matrix" : this.getName()) + "\": {\n");

    for (int i = 0; i < this.getDimension().getRows(); i++) {
        for (int j = 0; j < this.getDimension().getColumns(); j++) {
            if (j == 0) builder.append("\t");
            builder.append(this.entries[i][j]);
            if (j != this.getDimension().getColumns() - 1)
                builder.append(", ");
        }
        if (i != this.getDimension().getRows()) builder.append("\n");
    }

    builder.append("}");

    return builder.toString();
}

public boolean isSquare() {
    return this.getDimension().getColumns() == this.getDimension().getRows();
}

}

and here is the code method for matrix multiplication from MatrixOperations

public static Matrix multiply(Matrix matrix1, Matrix matrix2) throws MatrixException {

    if (matrix1.getDimension().getColumns() != matrix2.getDimension().getRows())
        throw new MatrixException(MATRIX_MULTIPLICATION_ERROR_MSG);

    Matrix retVal = new Matrix(matrix1.getDimension().getRows(), matrix2.getDimension().getColumns(), matrix1.getName() + " x " + matrix2.getName());


    for (int i = 0; i < matrix1.getDimension().getRows(); i++) {
        for (int j = 0; j < matrix2.getDimension().getColumns(); j++) {
            retVal.getEntries()[i][j] = sum(arrayProduct(matrix1.getEntries()[i], getColumnMatrix(matrix2, j)));
        }
    }

    return retVal;
}

and below again are the codes for methods sum, arrayProduct, and getColumnMatrix

private static double sum(double... values) {
    double sum = 0;
    for (double value : values) {
        sum += value;
    }
    return sum;
}

private static double[] arrayProduct(double[] arr1, double[] arr2) throws MatrixException {
    if (arr1.length != arr2.length) throw new MatrixException("Array lengths must be the same");
    double[] retVal = new double[arr1.length];
    for (int i = 0; i < arr1.length; i++) {
        retVal[i] = arr1[i] * arr2[i];
    }

    return retVal;
}


private static double[] getColumnMatrix(Matrix matrix, int col) {
    double[] ret = new double[matrix.getDimension().getRows()];
    for (int i = 0; i < matrix.getDimension().getRows(); i++) {
        ret[i] = matrix.getEntries()[i][col];
    }
    return ret;
}

Upvotes: 0

mikyra
mikyra

Reputation: 10357

Mathematically the Product of Matrices A (l x m) and B (m x n) is defined as a Matrix C (l x n) consisting of the elements:

        m
c_i_j = ∑  a_i_k * b_k_j
       k=1

So if you're not too much up for speed you might be happy with the straight forward O(n^3) implementation:

  for (int i=0; i<l; ++i)
    for (int j=0; j<n; ++j)
      for (int k=0; k<m; ++k)
        c[i][j] += a[i][k] * b[k][j]  

If instead you're up for speed you might want to check for other alternatives like Strassen algorithm (see: Strassen algorithm).

Nevertheless be warned - especially if you're multiplying small matrices on modern processor architectures speed heavily depends on matrix data and multiplication order arranged in a way to make best use of in cache lines.

I strongly doubt there will be any chance to influence this factor from withing a vm, so I'm not sure if this is to be taken into consideration.

Upvotes: 13

Related Questions