Reputation: 4751
I am developing a program that solves a system of equations. When it gives me the results, it is like: "x1= 1,36842". I'd like to get the fraction of that "1,36842", so I wrote this code.
procedure TForm1.Button1Click(Sender: TObject);
var numero,s:string;
a,intpart,fracpart,frazfatta:double;
y,i,mcd,x,nume,denomin,R:integer;
begin
a:=StrToFloat(Edit1.Text); //get the value of a
IntPart := Trunc(a); // here I get the numerator and the denominator
FracPart := a-Trunc(a);
Edit2.Text:=FloatToStr(FracPart);
numero:='1';
for i:= 1 to (length(Edit2.Text)-2) do
begin
numero:=numero+'0';
end; //in this loop it creates a string that has many 0 as the length of the denominator
Edit3.text:=FloatToStr(IntPart);
y:=StrToInt(numero);
x:=StrToInt(Edit3.Text);
while y <> 0 do
begin
R:= x mod y;
x:=y;
y:=R;
end;
mcd:=x; //at the end of this loop I have the greatest common divisor
nume:= StrToInt(Edit3.Text) div mcd;
denomin:= StrToInt(numero) div mcd;
Memo1.Lines.Add('fraction: '+IntToStr(nume)+'/'+IntToStr(denomin));
end;
It doesn't work correctly because the fraction that it gives to me is wrong. Could anyone help me please?
Upvotes: 3
Views: 2206
Reputation: 19
@Joni I tried 1/2 and the result was a "division by zero" error; I correct the loop adding:
if b - a = 0 then BREAK;
To avoid
b:= 1 / (b - a);
Upvotes: 1
Reputation: 978
I recommend defining a function GreaterCommonDivisor function first (wiki reference)
This is going to be Java/C like code since I'm not familiar with Delphi
let
float x = inputnum // where inputnum is a float
// eg. x = 123.56
Then, multiplying
int n = 1;
while(decimalpart != 0){// or cast int and check if equal-> (int)x == x
x = x * 10;
decimalpart = x % 1;
// or a function getting the decimal part if the cast does work
n *= 10;
}
// running eg. x = 123.56 now x = 12356
// n = 100
Then you should have (float)x/n == inputnum
at this point eg. (12356/100 == 123.56)
This mean you have a fraction that may not be simpified at this point. All you do now is implement and use the GCD function
int gcd = GreaterCommonDivisor(x, n);
// GreaterCommonDivisor(12356, 100) returns 4
// therefore for correct implementation gcd = 4
x /= gcd; // 12356 / 4 = 3089
n /= gcd; // 100 / 4 = 25
This should be quick and simple to implement, but:
Upvotes: 3
Reputation: 111259
Continued fractions can be used to find good rational approximations to real numbers. Here's an implementation in JavaScript, I'm sure it's trivial to port to Delphi:
function float2rat(x) {
var tolerance = 1.0E-6;
var h1=1; var h2=0;
var k1=0; var k2=1;
var b = x;
do {
var a = Math.floor(b);
var aux = h1; h1 = a*h1+h2; h2 = aux;
aux = k1; k1 = a*k1+k2; k2 = aux;
b = 1/(b-a);
} while (Math.abs(x-h1/k1) > x*tolerance);
return h1+"/"+k1;
}
For example, 1.36842 is converted into 26/19.
You can find a live demo and more information about this algorithm on my blog.
Upvotes: 2
Reputation: 612993
Your code cannot work because you are using binary floating point. And binary floating point types cannot represent the decimal numbers that you are trying to represent. Representable binary floating point numbers are of the form s2e where s is the significand and e is the exponent. So, for example, you cannot represent 0.1 as a binary floating point value.
The most obvious solution is to perform the calculation using integer arithmetic. Don't call StrToFloat at all. Don't touch floating point arithmetic. Parse the input string yourself. Locate the decimal point. Use the number of digits that follow to work out the decimal scale. Strip off any leading or trailing zeros. And do the rest using integer arithmetic.
As an example, suppose the input is '2.79'
. Convert that, by processing the text, into numerator and denominator variables
Numerator := 279;
Denominator := 100;
Obviously you'd have to code string parsing routines rather than use integer literals, but that is routine.
Finally, complete the problem by finding the gcd of these two integers.
The bottom line is that to represent and operate on decimal data you need a decimal algorithm. And that excludes binary floating point.
Upvotes: 6