user248237
user248237

Reputation:

shuffling/permutating a DataFrame in pandas

What's a simple and efficient way to shuffle a dataframe in pandas, by rows or by columns? I.e. how to write a function shuffle(df, n, axis=0) that takes a dataframe, a number of shuffles n, and an axis (axis=0 is rows, axis=1 is columns) and returns a copy of the dataframe that has been shuffled n times.

Edit: key is to do this without destroying the row/column labels of the dataframe. If you just shuffle df.index that loses all that information. I want the resulting df to be the same as the original except with the order of rows or order of columns different.

Edit2: My question was unclear. When I say shuffle the rows, I mean shuffle each row independently. So if you have two columns a and b, I want each row shuffled on its own, so that you don't have the same associations between a and b as you do if you just re-order each row as a whole. Something like:

for 1...n:
  for each col in df: shuffle column
return new_df

But hopefully more efficient than naive looping. This does not work for me:

def shuffle(df, n, axis=0):
        shuffled_df = df.copy()
        for k in range(n):
            shuffled_df.apply(np.random.shuffle(shuffled_df.values),axis=axis)
        return shuffled_df

df = pandas.DataFrame({'A':range(10), 'B':range(10)})
shuffle(df, 5)

Upvotes: 84

Views: 127042

Answers (10)

W.P. McNeill
W.P. McNeill

Reputation: 17046

Sampling randomizes, so just sample the entire data frame.

df.sample(frac=1)

As @Corey Levinson notes, you have to be careful when you reassign:

df['column'] = df['column'].sample(frac=1).reset_index(drop=True)

Upvotes: 99

Zelazny7
Zelazny7

Reputation: 40628

Use numpy's random.permuation function:

In [1]: df = pd.DataFrame({'A':range(10), 'B':range(10)})

In [2]: df
Out[2]:
   A  B
0  0  0
1  1  1
2  2  2
3  3  3
4  4  4
5  5  5
6  6  6
7  7  7
8  8  8
9  9  9


In [3]: df.reindex(np.random.permutation(df.index))
Out[3]:
   A  B
0  0  0
5  5  5
6  6  6
3  3  3
8  8  8
7  7  7
9  9  9
1  1  1
2  2  2
4  4  4

Upvotes: 230

Ted Petrou
Ted Petrou

Reputation: 61967

A simple solution in pandas is to use the sample method independently on each column. Use apply to iterate over each column:

df = pd.DataFrame({'a':[1,2,3,4,5,6], 'b':[1,2,3,4,5,6]})
df

   a  b
0  1  1
1  2  2
2  3  3
3  4  4
4  5  5
5  6  6

df.apply(lambda x: x.sample(frac=1).values)

   a  b
0  4  2
1  1  6
2  6  5
3  5  3
4  2  4
5  3  1

You must use .value so that you return a numpy array and not a Series, or else the returned Series will align to the original DataFrame not changing a thing:

df.apply(lambda x: x.sample(frac=1))

   a  b
0  1  1
1  2  2
2  3  3
3  4  4
4  5  5
5  6  6

Upvotes: 11

Raphvanns
Raphvanns

Reputation: 1894

I know the question is for a pandas df but in the case the shuffle occurs by row (column order changed, row order unchanged), then the columns names do not matter anymore and it could be interesting to use an np.array instead, then np.apply_along_axis() will be what you are looking for.

If that is acceptable then this would be helpful, note it is easy to switch the axis along which the data is shuffled.

If you panda data frame is named df, maybe you can:

  1. get the values of the dataframe with values = df.values,
  2. create an np.array from values
  3. apply the method shown below to shuffle the np.array by row or column
  4. recreate a new (shuffled) pandas df from the shuffled np.array

Original array

a = np.array([[10, 11, 12], [20, 21, 22], [30, 31, 32],[40, 41, 42]])
print(a)
[[10 11 12]
 [20 21 22]
 [30 31 32]
 [40 41 42]]

Keep row order, shuffle colums within each row

print(np.apply_along_axis(np.random.permutation, 1, a))
[[11 12 10]
 [22 21 20]
 [31 30 32]
 [40 41 42]]

Keep colums order, shuffle rows within each column

print(np.apply_along_axis(np.random.permutation, 0, a))
[[40 41 32]
 [20 31 42]
 [10 11 12]
 [30 21 22]]

Original array is unchanged

print(a)
[[10 11 12]
 [20 21 22]
 [30 31 32]
 [40 41 42]]

Upvotes: 2

Franck Dernoncourt
Franck Dernoncourt

Reputation: 83197

You can use sklearn.utils.shuffle() (requires sklearn 0.16.1 or higher to support Pandas data frames):

# Generate data
import pandas as pd
df = pd.DataFrame({'A':range(5), 'B':range(5)})
print('df: {0}'.format(df))

# Shuffle Pandas data frame
import sklearn.utils
df = sklearn.utils.shuffle(df)
print('\n\ndf: {0}'.format(df))

outputs:

df:    A  B
0  0  0
1  1  1
2  2  2
3  3  3
4  4  4


df:    A  B
1  1  1
0  0  0
3  3  3
4  4  4
2  2  2

Then you can use df.reset_index() to reset the index column, if needs to be:

df = df.reset_index(drop=True)
print('\n\ndf: {0}'.format(df)

outputs:

df:    A  B
0  1  1
1  0  0
2  4  4
3  2  2
4  3  3

Upvotes: 23

ashimashi
ashimashi

Reputation: 483

Here is a work around I found if you want to only shuffle a subset of the DataFrame:

shuffle_to_index = 20
df = pd.concat([df.iloc[np.random.permutation(range(shuffle_to_index))], df.iloc[shuffle_to_index:]])

Upvotes: 0

Evan Zamir
Evan Zamir

Reputation: 8461

From the docs use sample():

In [79]: s = pd.Series([0,1,2,3,4,5])

# When no arguments are passed, returns 1 row.
In [80]: s.sample()
Out[80]: 
0    0
dtype: int64

# One may specify either a number of rows:
In [81]: s.sample(n=3)
Out[81]: 
5    5
2    2
4    4
dtype: int64

# Or a fraction of the rows:
In [82]: s.sample(frac=0.5)
Out[82]: 
5    5
4    4
1    1
dtype: int64

Upvotes: 6

JeromeZhao
JeromeZhao

Reputation: 115

This might be more useful when you want your index shuffled.

def shuffle(df):
    index = list(df.index)
    random.shuffle(index)
    df = df.ix[index]
    df.reset_index()
    return df

It selects new df using new index, then reset them.

Upvotes: 3

Midnighter
Midnighter

Reputation: 3881

I resorted to adapting @root 's answer slightly and using the raw values directly. Of course, this means you lose the ability to do fancy indexing but it works perfectly for just shuffling the data.

In [1]: import numpy

In [2]: import pandas

In [3]: df = pandas.DataFrame({"A": range(10), "B": range(10)})    

In [4]: %timeit df.apply(numpy.random.shuffle, axis=0)
1000 loops, best of 3: 406 µs per loop

In [5]: %%timeit
   ...: for view in numpy.rollaxis(df.values, 1):
   ...:     numpy.random.shuffle(view)
   ...: 
10000 loops, best of 3: 22.8 µs per loop

In [6]: %timeit df.apply(numpy.random.shuffle, axis=1)
1000 loops, best of 3: 746 µs per loop

In [7]: %%timeit                                      
for view in numpy.rollaxis(df.values, 0):
    numpy.random.shuffle(view)
   ...: 
10000 loops, best of 3: 23.4 µs per loop

Note that numpy.rollaxis brings the specified axis to the first dimension and then let's us iterate over arrays with the remaining dimensions, i.e., if we want to shuffle along the first dimension (columns), we need to roll the second dimension to the front, so that we apply the shuffling to views over the first dimension.

In [8]: numpy.rollaxis(df, 0).shape
Out[8]: (10, 2) # we can iterate over 10 arrays with shape (2,) (rows)

In [9]: numpy.rollaxis(df, 1).shape
Out[9]: (2, 10) # we can iterate over 2 arrays with shape (10,) (columns)

Your final function then uses a trick to bring the result in line with the expectation for applying a function to an axis:

def shuffle(df, n=1, axis=0):     
    df = df.copy()
    axis = int(not axis) # pandas.DataFrame is always 2D
    for _ in range(n):
        for view in numpy.rollaxis(df.values, axis):
            numpy.random.shuffle(view)
    return df

Upvotes: 4

root
root

Reputation: 80346

In [16]: def shuffle(df, n=1, axis=0):     
    ...:     df = df.copy()
    ...:     for _ in range(n):
    ...:         df.apply(np.random.shuffle, axis=axis)
    ...:     return df
    ...:     

In [17]: df = pd.DataFrame({'A':range(10), 'B':range(10)})

In [18]: shuffle(df)

In [19]: df
Out[19]: 
   A  B
0  8  5
1  1  7
2  7  3
3  6  2
4  3  4
5  0  1
6  9  0
7  4  6
8  2  8
9  5  9

Upvotes: 43

Related Questions