Reputation: 1788
I made star using this code:
t = 0:4/5*pi:4*pi;
x = sin(t);
y = cos(t);
star = plot(x, y);
axis([-1 11 -1 11])
Now I need to rotate and move this star at the same time. I tried this:
for i=1:0.1:10;
zAxis = [0 0 1];
center = [0 0 0];
rotate(star, zAxis, 5, center);
x = x+0.1;
y = y+0.1;
set(star, 'x', x, 'y', y);
pause(0.1);
end
But this code only moves star and doesn't rotate it. If I delete "set" command then it rotates. How can I combine those two actions?
Upvotes: 0
Views: 7696
Reputation: 8391
This can do the job..
t = 0:4/5*pi:4*pi;
x = sin(t);
y = cos(t) ;
y = y-mean(y);
x = x-mean(x); % # barycentric coordinates
% # rotation and translation
trasl = @(dx,dy) [dy; dx]; % # this vector will be rigidly added to each point of the system
rot = @(theta) [cos(theta) -sin(theta); sin(theta) cos(theta)]; % # this will provide rotation of angle theta
for i = 1:50
% # application of the roto-translation
% # a diagonal translation of x = i*.1 , y = i*.1 is added to the star
% # once a rotation of angle i*pi/50 is performed
x_t = bsxfun(@plus,rot(i*pi/50)*([x;y]), trasl(i*.1,i*.1) );
star = plot(x_t(1,:), x_t(2,:));
axis([-1 11 -1 11])
pause(.1)
end
In principle, homogeneous coordinates (in this case in the 2D projective space) allow one to do the same job in a neater way; in fact, they would allow one to use just one linear operator (3x3 matrix).
Homogeneous coordinates version:
Op = @(theta,dx,dy) [ rot(theta) , trasl(dx,dy) ; 0 0 1];
for i = 1:50
x_t = Op(i*pi/50,i*.1,i*.1)*[x;y;ones(size(x))];
star = plot(x_t(1,:), x_t(2,:));
axis([-1 11 -1 11])
pause(.1)
end
Upvotes: 1
Reputation: 4551
You can just use a rotation matrix to compute the correct transformation on the vectors [x; y]
:
theta = 5 * (pi / 180); % 5 deg in radians
Arot = [cos(theta) -sin(theta); sin(theta) cos(theta)];
xyRot = Arot * [x; y]; % rotates the points by theta
xyTrans = xyRot + 0.1; % translates all points by 0.1
set(star, 'x', xyTrans(1, :), 'y', xyTrans(2, :));
Upvotes: 0