Reputation: 1598
Let's suppose originally I have the following design using CRTP:
template<class Outputter> class Generator {
protected:
vector<int> v;
private:
void work(ostream& out) {
// perform first part of some complex operations on v
out << *static_cast<Outputter *>(this);
// perform second part of some complex operations on v
out << *static_cast<Outputter *>(this);
// many more ....
// perform some final actions
}
public:
Generator(unsigned length): v(length) {}
friend ostream& operator<<(ostream& out, Outputter&& generator) {
// perform some preparation work
work(out);
// perform some final actions
return out;
}
};
class SimpleDumpOutputter : public Generator<SimpleDumpOutputter> {
private:
unsigned count;
public:
SimpleDumpOutputter(unsigned length): Generator(length), count() {}
friend ostream& operator<<(ostream& out, SimpleDumpOutputter& outputter) {
out << "Step " << ++count << " of calculation: "
copy(outputter.v.begin(), outputter.v.end(), ostream_iterator<int>(out, " "));
out << endl;
return out;
}
};
class FancyOutputter : public Generator<FancyOutputter> { // create a graph using graphviz's dot language to visualise v
private:
// abbreviated
public:
FancyOutputter(unsigned length): Generator(length) {}
friend ostream& operator<<(ostream& out, FancyOutputter& outputter) {
// write statements to out
return out;
}
};
// some more different Outputters, for example an Outputter that creates a pretty LaTeX document
In this design, there is a Generator
CRTP class template that performs complex calculations on the vector<int> v
and prints the result at each step/part of calculation using its derived classes's befriended operator<<
.
Here's an interesting concept that I want to implement: I would want outputs in multiple formats in a single execution. Specifically, I thought I could do:
template<class Outputters> class AggregateOutputter : public Generator<AggregateOutputter<Outputters...> > {
private:
static const unsigned outputter_count = sizeof...(Outputters);
typedef array<ostream *, outputter_count> DestArr;
DestArr destinations;
public:
AggregateOutputter(unsigned v_length, DestArr destinations): IsomerGenerator<AggregateOutputter<Outputters...> >(length), destinations(destinations) {}
friend ostream& operator<<(ostream&, AggregateOutputter& outputter); // first argument is dummy, because we would use the ostreams in destinations
}
The idea is that the user would use, say, AggregateOutputter<SimpleDumpOutputter, FancyOutputter
and construct the object with an array
of two ostream
s. Whenever Generator
calls operator<<
on the outputter class, the AggregateOutputter
will iterate through the ostream
s in destinations
and the types in Outputters
and invoke something along the lines of *dest_iter << *static_cast<Outputter_Iter>(this);
.
I'm not sure how this would work though. I'm not sure whether multiple inheritance can be used this way, whether it is possible to "zip" between an array
and a pack of parameterised types. Is anyone knowledgable in this situation?
Upvotes: 1
Views: 1204
Reputation: 1598
Okay, here's a solution I came up with, after being inspired by John Bandela's solution here. (see my comment on the answer for why I don't think his approach fits my needs)
template<class... Outputters> class AggregateOutputter : public Generator<AggregateOutputter<Outputters...> > {
private:
typedef array<ostream *, sizeof...(Outputters)> DestArr;
DestArr destinations;
typedef typename DestArr::iterator DestArrIter;
struct OutputterHolder : public Outputters... {
OutputterHolder(vector<int>& v): Outputters(v)... {}
} outputter_holder;
template<class First, class... Rest> struct OutputHelper {
static void do_output(OutputterHolder *pthis, DestArrIter dest) {
**dest << *static_cast<First *>(pthis);
OutputHelper<Rest...>::do_output(pthis, ++dest);
}
};
template<class First> struct OutputHelper<First> {
static void do_output(OutputterHolder *pthis, DestArrIter dest) {
**dest << *static_cast<First *>(pthis);
}
};
public:
template<typename... OstreamStar> AggregateOutputter(unsigned length, OstreamStar... ostreams): Generator<AggregateOutputter<Outputters...> >(length), destinations{{ostreams...}}, outputter_holder(this->v) {
static_assert(sizeof...(OstreamStar) == sizeof...(Outputters), "number of outputters and destinations do not match");
}
friend ostream& operator<<(ostream& dummy_out, AggregateOutputter& outputter) {
OutputHelper<Outputters...>::do_output(&outputter.outputter_holder, outputter.destinations.begin());
// possibly write some logging info to dummy_out
return dummy_out;
}
};
// to use this:
ofstream fout("gv.gv");
cout << AggregateOutputter<FancyOutputter, SimpleDumpOutputter>(length, &fout, &cout);
The idea is that in addition to the output_helper
in John's answer (which I have renamed to OutputHelper
), there is another auxiliary struct
called OutputterHolder
, which inherits from all the Outputters
. I've also used an array
of ostream *
to store the destination of output, and modified do_output
to also take an iterator
so that the correct ostream
can be matched.
Importantly, to accompany the change, I've changed the protected member vector<int> v
in Generator
to a reference, ie vector<int>& v
, so that the data structure in outputter_holder
can be made to refer to the structure in AggregateOutputter
instead. This also requires addition of another constructor in all outputters that takes vector<int>&
. The original constructor that takes the length of v
would now allocate the memory using new
.
I'm not sure this solution I came up with is the best/most elegant solution though.
Upvotes: 0
Reputation: 2436
I modified your original design. I thought Generator doing a bunch of calculations when the output operator is called is surprising to say the least. Also for your AggregateOutputter to output to ignore the ostream parameter of << is also surprising. Also, Outputter does not have an is-a relationship with Generator.
I tried to separate out the concerns, and ended up not using CRTP but using variadic templates, but I think it does what you want.
#include <vector>
#include <iostream>
#include <iterator>
#include <array>
using namespace std;
class Generator {
protected:
vector<int> v;
public:
Generator(unsigned length): v(length) {}
template<class Outputter>
void do_calculations_with_output(Outputter& out){
// perform first part of some complex operations on v
out.output(v);
// perform second part of some complex operations on v
out.output(v);
// perform some final actions
}
};
class SimpleDumpOutputter {
private:
ostream* out;
unsigned count;
public:
SimpleDumpOutputter(ostream& os): out(&os), count() {}
template<class C>
void output(const C& c) {
*out << "Step " << ++count << " of calculation: ";
copy(c.begin(),c.end(), ostream_iterator<int>(*out, " "));
*out << endl;
}
};
class FancyOutputter {
ostream* out;
int count;
public:
FancyOutputter(ostream& os): out(&os),count() {}
template<class C>
void output(const C& c) {
// create a graph using graphviz's dot language to ease visualisation of v
*out << "Step " << ++count << " of calculation: ";
*out << "Graphviz output\n";
}
};
template<class... Outputters> class AggregateOutputter : private Outputters... {
private:
template<class First, class... Rest>
struct output_helper{
template<class C>
static void do_output(AggregateOutputter* pthis,const C& c){
static_cast<First*>(pthis)->output(c);
output_helper<Rest...>::do_output(pthis,c);
}
};
template<class First>
struct output_helper<First>{
template<class C>
static void do_output(AggregateOutputter* pthis,const C& c){
static_cast<First*>(pthis)->output(c);
}
};
public:
template<class... Out>
AggregateOutputter( Out&... out): Outputters(out)...{}
template<class C>
void output(const C& c) {
output_helper<Outputters...>::do_output(this,c);
}
};
int main(){
AggregateOutputter<FancyOutputter,SimpleDumpOutputter> out(cout,cout);
Generator g(10);
g.do_calculations_with_output(out);
}
Upvotes: 3