Reputation: 85
I'm setting up a DataFrame with two datetime columns like so:
range1 = Series(date_range('1/1/2011', periods=50, freq='D'))
range2 = Series(date_range('2/5/2011', periods=50, freq='D'))
df1 = DataFrame({'a': rng1, 'b': rng2}, dtype='datetime64[D]')
Oddly, asking the dtypes of df1 gives me:
In [71]: df1.dtypes
Out[71]:
a datetime64[ns]
b datetime64[ns]
What is worse, when I try to filter the dataframe like so:
In [62]:
d = datetime(2011,1,14)
df1[df1 > d]
I get an error:
TypeError Traceback (most recent call last)
<ipython-input-62-50b4b9735157> in <module>()
1 d = datetime(2011,1,14)
----> 2 df1[df1 > d]
/usr/local/lib/python2.7/site-packages/pandas/core/frame.pyc in f(self, other)
313 return self._combine_series_infer(other, func)
314 else:
--> 315 return self._combine_const(other, func)
316
317 f.__name__ = name
/usr/local/lib/python2.7/site-packages/pandas/core/frame.pyc in _combine_const(self, other, func)
3677 return self
3678
-> 3679 result_values = func(self.values, other)
3680
3681 if not isinstance(result_values, np.ndarray):
TypeError: can't compare datetime.datetime to long
Could anyone tell me why this is happening? I am using numpy 1.7 and pandas 0.10.1.
Upvotes: 3
Views: 6168
Reputation: 129018
only datetime64[ns]
dtypes are supported, try w/o the dtype
In [9]: df1 = DataFrame({'a': range1, 'b' : range2})
In [10]: df1
In [15]: df1.head()
Out[15]:
a b
0 2011-01-01 00:00:00 2011-02-05 00:00:00
1 2011-01-02 00:00:00 2011-02-06 00:00:00
2 2011-01-03 00:00:00 2011-02-07 00:00:00
3 2011-01-04 00:00:00 2011-02-08 00:00:00
4 2011-01-05 00:00:00 2011-02-09 00:00:00
In [16]: df1[df1.a>datetime.datetime(2011,1,14)].head()
Out[16]:
a b
14 2011-01-15 00:00:00 2011-02-19 00:00:00
15 2011-01-16 00:00:00 2011-02-20 00:00:00
16 2011-01-17 00:00:00 2011-02-21 00:00:00
17 2011-01-18 00:00:00 2011-02-22 00:00:00
18 2011-01-19 00:00:00 2011-02-23 00:00:00
FYI, after this: https://github.com/pydata/pandas/issues/3311 is merged in,
then the operation the OP indicated, a where
returns this:
In [15]: df1[df1>datetime.datetime(2011,1,14)].head(20)
Out[15]:
a b
0 NaT 2011-02-05 00:00:00
1 NaT 2011-02-06 00:00:00
2 NaT 2011-02-07 00:00:00
3 NaT 2011-02-08 00:00:00
4 NaT 2011-02-09 00:00:00
5 NaT 2011-02-10 00:00:00
6 NaT 2011-02-11 00:00:00
7 NaT 2011-02-12 00:00:00
8 NaT 2011-02-13 00:00:00
9 NaT 2011-02-14 00:00:00
10 NaT 2011-02-15 00:00:00
11 NaT 2011-02-16 00:00:00
12 NaT 2011-02-17 00:00:00
13 NaT 2011-02-18 00:00:00
14 2011-01-15 00:00:00 2011-02-19 00:00:00
15 2011-01-16 00:00:00 2011-02-20 00:00:00
16 2011-01-17 00:00:00 2011-02-21 00:00:00
17 2011-01-18 00:00:00 2011-02-22 00:00:00
18 2011-01-19 00:00:00 2011-02-23 00:00:00
19 2011-01-20 00:00:00 2011-02-24 00:00:00
Upvotes: 2