Reputation: 53
I want to compute the following infinite sum in Matlab, for a given x and tau:
I tried the following code, given x=0.5 and tau=1:
symsum((8/pi/pi)*sin(n*pi*0.5)*sin(n*pi*0.5)*exp(-n*n*pi*pi)/n/n,1,inf)
But I get this:
(228155022448185*sum((exp(-pi^2*n^2)*((exp(-(pi*n*i)/2)*i)/2 - (exp((pi*n*i)/2)*i)/2)^2)/n^2, n == 1..Inf))/281474976710656
I want an explicit value, assuming the sum converges. What am I doing wrong? It seems like Matlab doesn't compute exp() when returning symsum results. How do I tell Matlab to compute evaluate the exponentials?
Upvotes: 1
Views: 10455
Reputation: 1
You should first define your variable "n" using syms. Then, you can include this variable in your symsum code.
Here's what I did:
syms n; AA = symsum((8/pi/pi)*sin(n*pi*0.5)*sin(n*pi*0.5)*exp(-n*n*pi*pi)/n/n,n,1,inf); BB = double(AA)
BB = 4.1925e-05
Upvotes: 0
Reputation: 38032
Just to show you a different way, one that does not require the symbolic toolbox,
summ = 0;
summP = inf;
n = 1;
while abs(summP-summ) > 1e-16
summP = summ;
summ = summ + sin(n*pi*0.5)*sin(n*pi*0.5)*exp(-n*n*pi*pi)/n/n;
n = n + 1;
end
8/pi/pi * summ
which converges after just 1 iteration (pretty obvious, since exp(-4*6.28..)/n/n
is so tiny, and sin(..)
is always somewhere in [-1 1]
). So given tau==1
and x==0.5
, the infinite sum is essentially the value for n==1
.
Upvotes: 2