Reputation: 2072
I want to select a different a subset of a dataframe from each column and do and average like this
per <- data.frame(Apocal=c(10,1,2,3,4,0,6),Aporos=c(0,2,1,3,0,5,6),Euker=c(0,3,5,7,0,0,0), fecha=c(1,1,2,2,2,3,3))
temp <-with(per, per[Apocal>0,])
require(plyr)
temp <- ddply(temp, .(fecha), summarise, Apocal = mean(Apocal))
temp <-with(per, per[Aporos>0,])
temp <- ddply(temp, .(fecha), summarise, Aporos = mean(Aporos))
...
And repeat for every column, except fecha, is there any way to automate this with a function or another thing?
Thanks!
Upvotes: 3
Views: 171
Reputation: 118799
If your function is mean
you can use the function colMeans
normally. It computes mean of all columns (column-wise means). But since you require to compute the mean after removing each column's 0 entries, you can use colSums
as follows:
# x gets all columns grouped by `fecha`.
ddply(per, .(fecha), function(x) colSums(x[, -4])/colSums(x[, -4] != 0))
# fecha Apocal Aporos Euker
# 1 1 5.5 2.0 3
# 2 2 3.0 2.0 6
# 3 3 6.0 5.5 NaN
Upvotes: 1
Reputation: 965
pmean <- function(x,byvar){
y=x[,-1*byvar]
colSums(y*(y>0))/colSums(y>0)
}
ddply(per, .(fecha), function(x) pmean(x,4))
Modified version of Arun's soluton.
Upvotes: 1
Reputation: 89057
With aggregate
:
aggregate(. ~ fecha, data = per, function(x)mean(x[x > 0]))
# fecha Apocal Aporos Euker
# 1 1 5.5 2.0 3
# 2 2 3.0 2.0 6
# 3 3 6.0 5.5 NaN
Upvotes: 3