Reputation: 3918
I'm trying to learn scheme via SICP. Exercise 1.3 reads as follow: Define a procedure that takes three numbers as arguments and returns the sum of the squares of the two larger numbers. Please comment on how I can improve my solution.
(define (big x y)
(if (> x y) x y))
(define (p a b c)
(cond ((> a b) (+ (square a) (square (big b c))))
(else (+ (square b) (square (big a c))))))
Upvotes: 24
Views: 5991
Reputation: 680
With Scott Hoffman's and some irc help I corrected my faulty code, here it is
(define (p a b c)
(cond ((> a b)
(cond ((> b c)
(+ (square a) (square b)))
(else (+ (square a) (square c)))))
(else
(cond ((> a c)
(+ (square b) (square a))))
(+ (square b) (square c)))))
Upvotes: 3
Reputation: 21
It's nice to see how other people have solved this problem. This was my solution:
(define (isGreater? x y z)
(if (and (> x z) (> y z))
(+ (square x) (square y))
0))
(define (sumLarger x y z)
(if (= (isGreater? x y z) 0)
(sumLarger y z x)
(isGreater? x y z)))
I solved it by iteration, but I like ashitaka's and the (+ (square (max x y)) (square (max (min x y) z))) solutions better, since in my version, if z is the smallest number, isGreater? is called twice, creating an unnecessarily slow and circuitous procedure.
Upvotes: 2
Reputation: 11
Below is the solution that I came up with. I find it easier to reason about a solution when the code is decomposed into small functions.
; Exercise 1.3
(define (sum-square-largest a b c)
(+ (square (greatest a b))
(square (greatest (least a b) c))))
(define (greatest a b)
(cond (( > a b) a)
(( < a b) b)))
(define (least a b)
(cond ((> a b) b)
((< a b) a)))
(define (square a)
(* a a))
Upvotes: 0
Reputation: 3762
I think this is the smallest and most efficient way:
(define (square-sum-larger a b c)
(+
(square (max a b))
(square (max (min a b) c))))
Upvotes: 0
Reputation: 215
(define (sum a b) (+ a b))
(define (square a) (* a a))
(define (greater a b )
( if (< a b) b a))
(define (smaller a b )
( if (< a b) a b))
(define (sumOfSquare a b)
(sum (square a) (square b)))
(define (sumOfSquareOfGreaterNumbers a b c)
(sumOfSquare (greater a b) (greater (smaller a b) c)))
Upvotes: 1
Reputation: 17866
(define (f a b c)
(if (= a (min a b c))
(+ (* b b) (* c c))
(f b c a)))
Upvotes: 5
Reputation: 51
(define (sum-sqr x y)
(+ (square x) (square y)))
(define (sum-squares-2-of-3 x y z)
(cond ((and (<= x y) (<= x z)) (sum-sqr y z))
((and (<= y x) (<= y z)) (sum-sqr x z))
((and (<= z x) (<= z y)) (sum-sqr x y))))
Upvotes: 5
Reputation: 661
;exercise 1.3
(define (sum-square-of-max a b c)
(+ (if (> a b) (* a a) (* b b))
(if (> b c) (* b b) (* c c))))
Upvotes: 0
Reputation: 4765
Using only the concepts introduced up to that point of the text, which I think is rather important, here is a different solution:
(define (smallest-of-three a b c)
(if (< a b)
(if (< a c) a c)
(if (< b c) b c)))
(define (square a)
(* a a))
(define (sum-of-squares-largest a b c)
(+ (square a)
(square b)
(square c)
(- (square (smallest-of-three a b c)))))
Upvotes: 6
Reputation: 223183
big
is called max
. Use standard library functionality when it's there.
My approach is different. Rather than lots of tests, I simply add the squares of all three, then subtract the square of the smallest one.
(define (exercise1.3 a b c)
(let ((smallest (min a b c))
(square (lambda (x) (* x x))))
(+ (square a) (square b) (square c) (- (square smallest)))))
Whether you prefer this approach, or a bunch of if
tests, is up to you, of course.
Alternative implementation using SRFI 95:
(define (exercise1.3 . args)
(let ((sorted (sort! args >))
(square (lambda (x) (* x x))))
(+ (square (car sorted)) (square (cadr sorted)))))
As above, but as a one-liner (thanks synx @ freenode #scheme); also requires SRFI 1 and SRFI 26:
(define (exercise1.3 . args)
(apply + (map! (cut expt <> 2) (take! (sort! args >) 2))))
Upvotes: 15
Reputation: 1103
I've had a go:
(define (procedure a b c)
(let ((y (sort (list a b c) >)) (square (lambda (x) (* x x))))
(+ (square (first y)) (square(second y)))))
Upvotes: 0
Reputation: 406095
I did it with the following code, which uses the built-in min
, max
, and square
procedures. They're simple enough to implement using only what's been introduced in the text up to that point.
(define (sum-of-highest-squares x y z)
(+ (square (max x y))
(square (max (min x y) z))))
Upvotes: 14
Reputation: 674
Using only the concepts presented at that point of the book, I would do it:
(define (square x) (* x x))
(define (sum-of-squares x y) (+ (square x) (square y)))
(define (min x y) (if (< x y) x y))
(define (max x y) (if (> x y) x y))
(define (sum-squares-2-biggest x y z)
(sum-of-squares (max x y) (max z (min x y))))
Upvotes: 34
Reputation: 556
What about something like this?
(define (p a b c)
(if (> a b)
(if (> b c)
(+ (square a) (square b))
(+ (square a) (square c)))
(if (> a c)
(+ (square a) (square b))
(+ (square b) (square c)))))
Upvotes: 12
Reputation: 117330
Looks ok to me, is there anything specific you want to improve on?
You could do something like:
(define (max2 . l)
(lambda ()
(let ((a (apply max l)))
(values a (apply max (remv a l))))))
(define (q a b c)
(call-with-values (max2 a b c)
(lambda (a b)
(+ (* a a) (* b b)))))
(define (skip-min . l)
(lambda ()
(apply values (remv (apply min l) l))))
(define (p a b c)
(call-with-values (skip-min a b c)
(lambda (a b)
(+ (* a a) (* b b)))))
And this (proc p) can be easily converted to handle any number of arguments.
Upvotes: 4
Reputation: 414835
Here's yet another way to do it:
#!/usr/bin/env mzscheme #lang scheme/load (module ex-1.3 scheme/base (define (ex-1.3 a b c) (let* ((square (lambda (x) (* x x))) (p (lambda (a b c) (+ (square a) (square (if (> b c) b c)))))) (if (> a b) (p a b c) (p b a c)))) (require scheme/contract) (provide/contract [ex-1.3 (-> number? number? number? number?)])) ;; tests (module ex-1.3/test scheme/base (require (planet "test.ss" ("schematics" "schemeunit.plt" 2)) (planet "text-ui.ss" ("schematics" "schemeunit.plt" 2))) (require 'ex-1.3) (test/text-ui (test-suite "ex-1.3" (test-equal? "1 2 3" (ex-1.3 1 2 3) 13) (test-equal? "2 1 3" (ex-1.3 2 1 3) 13) (test-equal? "2 1. 3.5" (ex-1.3 2 1. 3.5) 16.25) (test-equal? "-2 -10. 3.5" (ex-1.3 -2 -10. 3.5) 16.25) (test-exn "2+1i 0 0" exn:fail:contract? (lambda () (ex-1.3 2+1i 0 0))) (test-equal? "all equal" (ex-1.3 3 3 3) 18)))) (require 'ex-1.3/test)
Example:
$ mzscheme ex-1.3.ss 6 success(es) 0 failure(s) 0 error(s) 6 test(s) run 0
Upvotes: 2
Reputation: 17211
You can also sort the list and add the squares of the first and second element of the sorted list:
(require (lib "list.ss")) ;; I use PLT Scheme
(define (exercise-1-3 a b c)
(let* [(sorted-list (sort (list a b c) >))
(x (first sorted-list))
(y (second sorted-list))]
(+ (* x x) (* y y))))
Upvotes: 2