Reputation: 1166
Please consider the below algorithm:
for(j1 = n upto 0)
for(j2 = n-j1 upto 0)
for(j3 = n-j1-j2 upto 0)
.
.
for (jmax = n -j1 - j2 - j_(max-1))
{
count++;
product.append(j1 * j2 ... jmax); // just an example
}
As you can see, some relevant points about the algo snippet above:
Is this problem a suitable candidate for recursion? If yes, i am really not sure how to break the problem up. I am trying to code this up in python, and i do not expect any code from you guys. Just some pointers or examples in the right direction. Thank you.
Here is an initial try for a sample case http://pastebin.com/PiLNTWED
Upvotes: 0
Views: 240
Reputation: 1166
-- As a response to the excellent listing by Blckgnht -- Consider here the case of n = 2 and max = 3
def simpletest():
'''
I am going to just test the algo listing with assumption
degree n = 2
max = dim(m_p(n-1)) = 3,
so j1 j2 and upto j3 are required for every entry into m_p(degree2)
Lets just print j1,j2,j3 to verify if the function
works in other general version where the number of for loops is not known
'''
n = 2
count = 0
for j1 in range(n, -1, -1):
for j2 in range(n -j1, -1, -1):
j3 = (n-(j1+j2))
count = count + 1
print 'To calculate m_p(%d)[%d], j1,j2,j3 = ' %(n,count), j1, j2, j3
assert(count==6) # just a checkpoint. See P.169 for a proof
print 'No. of entries =', count
The output of this code (and it is correct).
In [54]: %run _myCode/Python/invariant_hack.py
To calculate m_p(2)[1], j1,j2,j3 = 2 0 0
To calculate m_p(2)[2], j1,j2,j3 = 1 1 0
To calculate m_p(2)[3], j1,j2,j3 = 1 0 1
To calculate m_p(2)[4], j1,j2,j3 = 0 2 0
To calculate m_p(2)[5], j1,j2,j3 = 0 1 1
To calculate m_p(2)[6], j1,j2,j3 = 0 0 2
No. of entries = 6
Upvotes: 0
Reputation: 104722
Your algorithm is finding all the m
-tuples (m
being the max
subscript of j
from your pseudocode) of non-negative integers that add up to n
or less. In Python, the most natural way of expressing that would be with a recursive generator:
def gen_tuples(m, n):
if m == 0:
yield ()
else:
for x in range(n, -1, -1):
for sub_result in gen_tuples(m-1, n-x):
yield (x,)+sub_result
Example output:
>>> for x, y, z in gen_sums(3, 3):
print(x, y, z)
3 0 0
2 1 0
2 0 1
2 0 0
1 2 0
1 1 1
1 1 0
1 0 2
1 0 1
1 0 0
0 3 0
0 2 1
0 2 0
0 1 2
0 1 1
0 1 0
0 0 3
0 0 2
0 0 1
0 0 0
Upvotes: 1
Reputation: 6841
Typically, if you want to transform for
loops into recursive calls, you will need to replace the for
statements with if
statements. For nested loops, you will transform these into function calls.
For practice, start with a dumb translation of the code that works and then attempt to see where you can optimize later.
To give you an idea to try to apply to your situation, I would translate something like this:
results = []
for i in range(n):
results.append(do_stuff(i, n))
to something like this:
results = []
def loop(n, results, i=0):
if i >= n:
return results
results.append(do_stuff(i, n))
i += 1
loop(n, results, i)
there are different ways to handle returning the results list, but you can adapt to your needs.
Upvotes: 0
Reputation: 194
You could also consider using permutations, combinations or product from the itertools module. If you want all the possible combinations of i, j, k, ... (i.e. nested for loops) you can use:
for p in product(range(n), repeat=depth):
j1, j2, j3, ... = p # the same as nested for loops
# do stuff here
But beware, the number of iterations in the loop grows exponentially!
Upvotes: 1
Reputation: 17238
the toy example will translate into a kind of tail recursion so, personally, i wouldn't expect a recursive version to be more insightful for code review and maintenance.
however, to get acquainted to the principle, attempt to factor out the invariant parts / common terms from the individual loop and try to identify a pattern (and best prove it afterwards!). you should be able to fix a signature of the recursive procedure to be written. flesh it out with the parts inherent to the loop body/ies (and don't forget the termination condition).
Upvotes: 0