Reputation: 2373
I want to modify the famous binary search algorithm to return the index of the next bigger item instead of the key being searched.
So we have 4 cases:
e.g:
data = { 1, 3, 5, 7, 9, 11 };
search for 5 or 6 returns 3.
while (low <= high) {
mid = (low + high) / 2;
if (data[mid] < val)
low = mid + 1;
else if (data[mid] > val)
high = mid - 1;
else {
break;
}
}
Currently got it working by examining low and high values. Is there any interesting code to do so!
EDIT !!!
here is how I get it working:
if (low <= high)
found = (low + high) / 2 + 1;
else if (low >= data.length)
found = data.length ;
else if (high < 0)
found = -1;
else
found = low;
I am looking for a more elegant way!
EDIT II !!!
this code works if no duplicates. to handle the case of duplicates we need to modify the first if condition:
if (low <= high)
found = (low + high) / 2 + 1;
to iterate until it finds a bigger element.
Upvotes: 6
Views: 15174
Reputation: 1014
here is a code that :
public static int ceilSearch(int arr[], int low, int high, int x) {
int mid;
if (x <= arr[low])
return low;
if (x > arr[high])
return -1;
mid = (low + high) / 2; /* low + (high - low)/2 */
if (arr[mid] == x)
return mid;
else if (arr[mid] < x) {
if (mid + 1 <= high && x <= arr[mid + 1])
return mid + 1;
else
return ceilSearch(arr, mid + 1, high, x);
} else {
if (mid - 1 >= low && x > arr[mid - 1])
return mid;
else
return ceilSearch(arr, low, mid - 1, x);
}
}
Upvotes: 3
Reputation: 3057
Here is some C code that meet's the OP's requirements for searching:
It also demonstrates 4 different types of binary searching:
(It assumes there are no duplicates in data
)
#include <stdio.h>
int BinarySearch( int key, int data[], const int len )
{
int low = 0;
int high = len-1;
while( high >= low )
{
int mid = low + ((high - low) / 2);
/**/ if (data[mid] < key) low = mid + 1;
else if (data[mid] > key) high = mid - 1;
else return mid ;
}
return -1; // KEY_NOT_FOUND
}
int LessThanEqualBinSearch( int key, int data[], const int len )
{
int min = 0;
int max = len-1;
// var max = data.length - 1; // Javascript, Java conversion
while( min <= max)
{
int mid = min + ((max - min) / 2);
/**/ if (data[mid] < key) min = mid + 1;
else if (data[mid] > key) max = mid - 1;
else /*data[mid] = key)*/return mid ;
}
if( max < 0 )
return 0; // key < data[0]
else
if( min > (len-1))
return -1; // key >= data[len-1] // KEY_NOT_FOUND
else
return (min < max)
? min
: max + 1;
}
int LessThanEqualOrLastBinSearch( int key, int data[], const int len )
{
int min = 0;
int max = len-1;
// var max = data.length - 1; // Javascript, Java conversion
while( min <= max)
{
int mid = min + ((max - min) / 2);
/**/ if (data[mid] < key) min = mid + 1;
else if (data[mid] > key) max = mid - 1;
else /*data[mid] = key)*/return mid ;
}
if( max < 0 )
return 0; // key < data[0]
else
if( min > (len-1))
return len-1; // key >= data[len-1]
else
return (min < max)
? min
: max + 1;
}
int NextLargestBinSearch( int key, int data[], const int len )
{
int low = 0;
int high = len-1;
while( low <= high)
{
// To convert to Javascript:
// var mid = low + ((high - low) / 2) | 0;
int mid = low + ((high - low) / 2);
/**/ if (data[mid] < key) low = mid + 1;
else if (data[mid] > key) high = mid - 1;
else return mid + 1;
}
if( high < 0 )
return 0; // key < data[0]
else
if( low > (len-1))
return len; // key >= data[len-1]
else
return (low < high)
? low + 1
: high + 1;
}
int main()
{
int items[] = { 1, 3, 5, 7, 9, 11 };
int LENGTH = sizeof(items) / sizeof(items[0]);
for( int i = -1; i < 14; ++i )
printf( "[%2d]: == %2d <= %2d <| %d > %d\n", i
, BinarySearch ( i, items, LENGTH )
, LessThanEqualBinSearch ( i, items, LENGTH )
, LessThanEqualOrLastBinSearch( i, items, LENGTH )
, NextLargestBinSearch ( i, items, LENGTH )
);
return 0;
}
Output:
[-1]: == -1 <= 0 <| 0 > 0
[ 0]: == -1 <= 0 <| 0 > 0
[ 1]: == 0 <= 0 <| 0 > 1
[ 2]: == -1 <= 1 <| 1 > 1
[ 3]: == 1 <= 1 <| 1 > 2
[ 4]: == -1 <= 2 <| 2 > 2
[ 5]: == 2 <= 2 <| 2 > 3
[ 6]: == -1 <= 3 <| 3 > 3
[ 7]: == 3 <= 3 <| 3 > 4
[ 8]: == -1 <= 4 <| 4 > 4
[ 9]: == 4 <= 4 <| 4 > 5
[10]: == -1 <= 5 <| 5 > 5
[11]: == 5 <= 5 <| 5 > 6
[12]: == -1 <= -1 <| 5 > 6
[13]: == -1 <= -1 <| 5 > 6
1st
column is the standard binary search2nd
column is the Less Than binary search3rd
column is the Less Than Or Last binary search4th
column is the Next Largest binary searchUpvotes: 10
Reputation: 4191
Here is what you want. It returns the next bigger element.
public int binarySearch(int[] arr, int key) {
int lo = 0;
int hi = arr.length - 1;int mid = 0;
while (lo <= hi) {
mid = (lo + hi) / 2;
if (key < arr[mid]) hi = mid - 1;
else if (key > arr[mid]) lo = mid + 1;
else return mid;
}
return -Math.min(lo, hi)-2;
}
public int myBinarySearch(int[] arr, int key){
int x = binarySearch(arr, key);
if(x >= arr.length-1 || -x > arr.length){
//whatever you want to return
return Integer.MAX_VALUE;
}
else if(x >= 0)
return arr[x+1] ;
else
return arr[-x-1];
}
public static void main(String args[]) {
Triall tr = new Triall();
int arr[] = { 1, 3, 5, 7, 9, 11 };
for( int i = 0; i < 13; i++ ) {
int n = tr.myBinarySearch( arr,i );
System.out.println(i + " " + n );
}
}
Upvotes: 0