Reputation: 387
I am having trouble trying to sign-extend a number by extracting part of a bit-string. This has trouble when it is a negative number, it wraps the number around to the positive side. Here is my code:
// printf("add1 \n");
unsigned short r1 = (instruction>>6)&7;
signed short amount = (instruction& 31); //right here! i am trying to get the last 5 bits and store it in a register but i can't figure out how to make it negative if it is negative
// printf("\namount is %d \n", amount);
unsigned short dest = (instruction>>9)&7;
state->regs[dest] = state->regs[r1]+amount;
setCC(state,state->regs[r1]+amount);
Upvotes: 2
Views: 10985
Reputation: 19504
For bit patterns, it's often easier to use hex constants instead of decimal.
signed short amount = (instruction & 0x1F);
Then to sign-extend the number, check the sign-bit (assuming the sign-bit here is the left-most of the 5 extracted bits). If it's set, do a binary inversion and add 1. Take the 2's-complement of the 5-bit value (invert and add one), then take the 2's-complement of the full-width result (invert and add 1).
if (amount & 0x10)
amount = ~(amount^0x1F + 1) + 1;
Eg.
5-bit "bitfield"
X XXXX
0000 0000 0001 1111
0000 0000 0000 0000 invert x ^ 0x1F (= 1 1111)
0000 0000 0000 0001 add 1
1111 1111 1111 1110 invert ~
1111 1111 1111 1111 add 1
0000 0000 0001 0000
0000 0000 0000 1111 invert x ^ 0x1F (= 1 1111)
0000 0000 0001 0000 add 1
1111 1111 1110 1111 invert ~
1111 1111 1111 0000 add 1
Ooops. Even simpler:
-(x^0x1F + 1) Assuming the machine operates with 2's-complement
0000 0000 0001 0110
0000 0000 0000 1001 invert
0000 0000 0000 1010 add 1 (yielding the full-width absolute value)
1111 1111 1111 0110 negate
Upvotes: 4
Reputation: 9543
From Hacker's Delight 2-6. Assuming 5 bits of data that must be sign extended (sign bit has value 16).
Best case: If the upper bits are all zeros:
(i ^ 16) - 16
Next best case (as with OP's instruction
): If the upper bits contain data that must be discarded:
(i & 15) - (i & 16)
Upvotes: 2
Reputation: 144770
Here is how you can sign extend a 5-bit two's complement value portably without tests:
int amount = (instruction & 31) - ((instruction & 16) << 1);
More generally, it the field width is n
, non zero and less than the number of bits in an int
, you can write:
int amount = (instruction & ~(~1U << (n - 1) << 1)) -
((instruction & (1U << (n - 1)) << 1);
Upvotes: 1
Reputation: 28251
You can check the sign-bit and fix-up the result accordingly:
int width_of_field = 5;
signed short amount = (instruction& 31);
if (amount & (1 << width_of_field >> 1)) // look at the sign bit
{
amount -= 1 << width_of_field; // fix the result
}
Alternatively, use a left-shift followed by a right shift:
width_of_field = 5;
signed short amount = (instruction& 31);
// It is possible to omit the "& 31", because of the left shift below
amount <<= 16 - width_of_field;
amount >>= 16 - width_of_field;
Note: must use two statements to avoid effects of promotion to int
(which presumably has 32 bits).
Upvotes: 0
Reputation: 20027
use bitfields:
union {
int a;
struct {
int a:5;
int b:3;
unsigned int c:20;
} b;
} u = 0xdeadbeef;
int b = u.b.b; // should sign extend the 3-bit bitfield starting from bit 5
Upvotes: 2