Reputation: 1644
Is there an easy way to check if axes in matplotlib are logarithmic/linear?
If I type ax.transData.__dict__
(ax is semilogy
), I get:
{'_a': TransformWrapper(BlendedGenericTransform(IdentityTransform(),<matplotlib.scale.Log10Transform object at 0x10ffb3650>)),
'_b': CompositeGenericTransform(BboxTransformFrom(TransformedBbox(Bbox('array([[ 0.00000000e+00, 1.00000000e+00],\n [ 2.00000000e+03, 1.00000000e+08]])'), TransformWrapper(BlendedGenericTransform(IdentityTransform(),<matplotlib.scale.Log10Transform object at 0x10ffb3650>)))), BboxTransformTo(TransformedBbox(Bbox('array([[ 0.05482517, 0.05046296],\n [ 0.96250543, 0.95810185]])'), BboxTransformTo(TransformedBbox(Bbox('array([[ 0., 0.],\n [ 8., 6.]])'), Affine2D(array([[ 80., 0., 0.],
[ 0., 80., 0.],
[ 0., 0., 1.]]))))))),
'_invalid': 2,
'_parents': <WeakValueDictionary at 4572332904>,
'_shorthand_name': '',
'input_dims': 2,
'output_dims': 2}
I could write a method to check if the subtransforms ax.transData._a._child
are log-scale but I don't like that it accesses private variables and it seems rather unsustainable, since the variable name can change.
Upvotes: 2
Views: 1159
Reputation: 87376
There is also the (poorly documented) function axis.get_scale()
scale_str = ax.get_yaxis().get_scale()
which returns a string.
Upvotes: 7
Reputation: 1644
Turns out the scale is hidden in ax.yaxis._scale
:
import matplotlib as mpl
type(ax.yaxis._scale) == mpl.scale.LogScale
This returns True
, which is exactly what I need.
Upvotes: 3