Reputation: 15
So basically I have this format of data:
ID Value
1 32
5 231
2 122
1 11
3 ...
2 ...
5 ...
6 ...
2 ...
1 33
. ...
. ...
. ...
I want to sum up the values with ID '1', but in a group of 5. i.e. In the first 5 entries, there are 2 entries with ID '1', so i get a sum 43, and then in the next 5 entries, only one entry have ID '1', so i get 33. and so on... so at the end I want to get a array with all the sums, i.e. (43,33,......)
I can do it with for loop and tapply, but I think there must be a better way in R that doesnt need a for loop
Any help is much appreciated! Thank you very much!
Upvotes: 0
Views: 196
Reputation: 38629
If you add a column to delineate groups, ddply()
can work magic:
ID <- c(1, 5, 2, 1, 3, 2, 5, 6, 2, 1)
Value <- c(32, 231, 122, 11, 45, 34, 74, 12, 32, 33)
Group <- rep(seq(100), each=5)[1:length(ID)]
test.data <- data.frame(ID, Value, Group)
library(plyr)
output <- ddply(test.data, .(Group, ID), function(chunk) sum(chunk$Value))
> head(test.data)
ID Value Group
1 1 32 1
2 5 231 1
3 2 122 1
4 1 11 1
5 3 45 1
6 2 34 2
> head(output)
Group ID V1
1 1 1 47
2 1 2 125
3 1 3 49
4 1 5 237
5 2 1 36
6 2 2 74
Upvotes: 0
Reputation: 60070
Make a new column to reflect the groups of 5:
df = data.frame(
id = sample(1:5, size=98, replace=TRUE),
value = sample(1:98)
)
# This gets you a vector of 1,1,1,1, 2,2,2,2,2, 3, ...
groups = rep(1:(ceiling(nrow(df) / 5)), each=5)
# But it might be longer than the dataframe, so:
df$group = groups[1:nrow(df)]
Then it's pretty easy to get the sums within each group:
library(plyr)
sums = ddply(
df,
.(group, id),
function(df_part) {
sum(df_part$value)
}
)
Example output:
> head(df)
id value group
1 4 94 1
2 4 91 1
3 3 22 1
4 5 42 1
5 1 46 1
6 2 38 2
> head(sums)
group id V1
1 1 1 46
2 1 3 22
3 1 4 185
4 1 5 42
5 2 2 55
6 2 3 158
Upvotes: 1
Reputation: 42649
Something like this will do the job:
m <- matrix(d$Value, nrow=5)
# Remove unwanted elements
m[which(d$ID != 1)] <- 0
# Fix for short data
if ((length(d$Value) %/% 5) != 0)
m[(length(d$Value)+1):length(m)] <- 0
# The columns contain the groups of 5
colSums(m)
Upvotes: 0