Reputation: 63687
I have a DataFrame
with column named date
. How can we convert/parse the 'date' column to a DateTime
object?
I loaded the date column from a Postgresql database using sql.read_frame()
. An example of the date
column is 2013-04-04
.
What I am trying to do is to select all rows in a dataframe that has their date columns within a certain period, like after 2013-04-01
and before 2013-04-04
.
My attempt below gives the error 'Series' object has no attribute 'read'
Attempt
import dateutil
df['date'] = dateutil.parser.parse(df['date'])
Error
AttributeError Traceback (most recent call last)
<ipython-input-636-9b19aa5f989c> in <module>()
15
16 # Parse 'Date' Column to Datetime
---> 17 df['date'] = dateutil.parser.parse(df['date'])
18
19 # SELECT RECENT SALES
C:\Python27\lib\site-packages\dateutil\parser.pyc in parse(timestr, parserinfo, **kwargs)
695 return parser(parserinfo).parse(timestr, **kwargs)
696 else:
--> 697 return DEFAULTPARSER.parse(timestr, **kwargs)
698
699
C:\Python27\lib\site-packages\dateutil\parser.pyc in parse(self, timestr, default, ignoretz, tzinfos, **kwargs)
299 default = datetime.datetime.now().replace(hour=0, minute=0,
300 second=0, microsecond=0)
--> 301 res = self._parse(timestr, **kwargs)
302 if res is None:
303 raise ValueError, "unknown string format"
C:\Python27\lib\site-packages\dateutil\parser.pyc in _parse(self, timestr, dayfirst, yearfirst, fuzzy)
347 yearfirst = info.yearfirst
348 res = self._result()
--> 349 l = _timelex.split(timestr)
350 try:
351
C:\Python27\lib\site-packages\dateutil\parser.pyc in split(cls, s)
141
142 def split(cls, s):
--> 143 return list(cls(s))
144 split = classmethod(split)
145
C:\Python27\lib\site-packages\dateutil\parser.pyc in next(self)
135
136 def next(self):
--> 137 token = self.get_token()
138 if token is None:
139 raise StopIteration
C:\Python27\lib\site-packages\dateutil\parser.pyc in get_token(self)
66 nextchar = self.charstack.pop(0)
67 else:
---> 68 nextchar = self.instream.read(1)
69 while nextchar == '\x00':
70 nextchar = self.instream.read(1)
AttributeError: 'Series' object has no attribute 'read'
df['date'].apply(dateutil.parser.parse)
gives me the error AttributeError: 'datetime.date' object has no attribute 'read'
df['date'].truncate(after='2013/04/01')
gives the error TypeError: can't compare datetime.datetime to long
df['date'].dtype
returns dtype('O')
. Is it already a datetime
object?
Upvotes: 37
Views: 67911
Reputation: 164773
datetime.date
with Pandas pd.Timestamp
A "Pandas datetime
series" contains pd.Timestamp
elements, not datetime.date
elements. The recommended solution for Pandas:
s = pd.to_datetime(s) # convert series to Pandas
mask = s > '2018-03-10' # calculate Boolean mask against Pandas-compatible object
The top answers have issues:
TypeError
.Any good Pandas solution must ensure:
datetime
series, not object
dtype.datetime
series is compared to a compatible object, e.g. pd.Timestamp
, or string in the correct format.Here's a demo with benchmarking, demonstrating that the one-off cost of conversion can be immediately offset by a single operation:
from datetime import date
L = [date(2018, 1, 10), date(2018, 5, 20), date(2018, 10, 30), date(2018, 11, 11)]
s = pd.Series(L*10**5)
a = s > date(2018, 3, 10) # accepted solution #2, inefficient
b = pd.to_datetime(s) > '2018-03-10' # more efficient, including datetime conversion
assert a.equals(b) # check solutions give same result
%timeit s > date(2018, 3, 10) # 40.5 ms
%timeit pd.to_datetime(s) > '2018-03-10' # 33.7 ms
s = pd.to_datetime(s)
%timeit s > '2018-03-10' # 2.85 ms
Upvotes: 5
Reputation: 4924
Pandas is aware of the object datetime but when you use some of the import functions it is taken as a string. So what you need to do is make sure the column is set as the datetime type not as a string. Then you can make your query.
df['date'] = pd.to_datetime(df['date'])
df_masked = df[(df['date'] > datetime.date(2012,4,1)) & (df['date'] < datetime.date(2012,4,4))]
Upvotes: 62
Reputation: 343
You should iterate over the items and parse them independently, then construct a new list.
df['date'] = [dateutil.parser.parse(x) for x in df['date']]
Upvotes: 2
Reputation: 17869
pandas already reads that as a datetime
object! So what you want is to select rows between two dates and you can do that by masking:
df_masked = df[(df.date > '2012-04-01') & (df.date < '2012-04-04')]
Because you said that you were getting an error from the string for some reason, try this:
df_masked = df[(df.date > datetime.date(2012,4,1)) & (df.date < datetime.date(2012,4,4))]
Upvotes: 6
Reputation: 4904
You probably need apply
, so something like:
df['date'] = df['date'].apply(dateutil.parser.parse)
Without an example of the column I can't guarantee this will work, but something in that direction should help you to carry on.
Upvotes: 9