Reputation: 5433
For the sake of learning something new, I am currently trying to reimplement the numpy.mean() function in C. It should take a 3D array and return a 2D array with the mean of the elements along axis 0. I manage to calculate the mean of all values, but don't really know how I would return a new array to Python.
My code so far:
#include <Python.h>
#include <numpy/arrayobject.h>
// Actual magic here:
static PyObject*
myexts_std(PyObject *self, PyObject *args)
{
PyArrayObject *input=NULL;
int i, j, k, x, y, z, dims[2];
double out = 0.0;
if (!PyArg_ParseTuple(args, "O!", &PyArray_Type, &input))
return NULL;
x = input->dimensions[0];
y = input->dimensions[1];
z = input->dimensions[2];
for(k=0;k<z;k++){
for(j=0;j<y;j++){
for(i=0;i < x; i++){
out += *(double*)(input->data + i*input->strides[0]
+j*input->strides[1] + k*input->strides[2]);
}
}
}
out /= x*y*z;
return Py_BuildValue("f", out);
}
// Methods table - this defines the interface to python by mapping names to
// c-functions
static PyMethodDef myextsMethods[] = {
{"std", myexts_std, METH_VARARGS,
"Calculate the standard deviation pixelwise."},
{NULL, NULL, 0, NULL}
};
PyMODINIT_FUNC initmyexts(void)
{
(void) Py_InitModule("myexts", myextsMethods);
import_array();
}
What I understand so far (and please correct me if I'm wrong) is that I need to create a new PyArrayObject
, which will be my output (maybe with PyArray_FromDims
?). Then I need an array of adresses to the memory of this array and fill it with data. How would I go about this?
EDIT:
After doing some more reading on pointers (here: http://pw1.netcom.com/~tjensen/ptr/pointers.htm), I achieved what I was aiming at. Now another question arises: Where would I find the origingal implementation of numpy.mean()? I'd like to see how it is, that the python operation is so much faster than my version. I assume it avoids the ugly looping.
Here is my solution:
static PyObject*
myexts_std(PyObject *self, PyObject *args)
{
PyArrayObject *input=NULL, *output=NULL; // will be pointer to actual numpy array ?
int i, j, k, x, y, z, dims[2]; // array dimensions ?
double *out = NULL;
if (!PyArg_ParseTuple(args, "O!", &PyArray_Type, &input))
return NULL;
x = input->dimensions[0];
y = dims[0] = input->dimensions[1];
z = dims[1] = input->dimensions[2];
output = PyArray_FromDims(2, dims, PyArray_DOUBLE);
for(k=0;k<z;k++){
for(j=0;j<y;j++){
out = output->data + j*output->strides[0] + k*output->strides[1];
*out = 0;
for(i=0;i < x; i++){
*out += *(double*)(input->data + i*input->strides[0] +j*input->strides[1] + k*input->strides[2]);
}
*out /= x;
}
}
return PyArray_Return(output);
}
Upvotes: 11
Views: 6233
Reputation: 1691
The Numpy API has a function PyArray_Mean
that accomplishes what you're trying to do without the "ugly looping" ;).
static PyObject *func1(PyObject *self, PyObject *args) {
PyArrayObject *X, *meanX;
int axis;
PyArg_ParseTuple(args, "O!i", &PyArray_Type, &X, &axis);
meanX = (PyArrayObject *) PyArray_Mean(X, axis, NPY_DOUBLE, NULL);
return PyArray_Return(meanX);
}
Upvotes: 3