Reputation: 171
I have a question I hope some of you might help me with. I am doing a thesis on pharmaceuticals and the effect from parallelimports. I am dealing with this in R, having a Panel Dataset
I need a variable, that counts for a given original product - how many parallelimporters are there for this given time period.
Product_ID PI t
1 0 1
1 1 1
1 1 1
1 0 2
1 1 2
1 1 2
1 1 2
1 1 2
2 0 1
2 1 1
2 0 2
2 1 2
2 0 3
2 1 3
2 1 3
2 1 3
Ideally what i want here is a new column, like number of PI-products (PI=1) for an original (PI=0) at time, t. So the output would be like:
Product_ID PI t nPIcomp
1 0 1 2
1 1 1
1 1 1
1 0 2 4
1 1 2
1 1 2
1 1 2
1 1 2
2 0 1 1
2 1 1
2 0 2 1
2 1 2
2 0 3 3
2 1 3
2 1 3
2 1 3
I hope I have made my issue clear :)
Thanks in advance, Henrik
Upvotes: 4
Views: 2063
Reputation: 89057
I would use ave
and your two columns Product_ID
and t
as grouping variables. Then, within each group, apply a function that returns the sum of PI followed by the appropriate number of NA
s:
dat <- transform(dat, nPIcomp = ave(PI, Product_ID, t,
FUN = function(z) {
n <- sum(z)
c(n, rep(NA, n))
}))
The same idea can be used with the data.table
package if your data is large and speed is a concern.
Upvotes: 2
Reputation: 59970
Roman's answers gives exactly what you want. In case you want to summarise the data this would be handy, using the plyr
pacakge (df
is what I have called your data.frame
)...
ddply( df , .(Product_ID , t ) , summarise , nPIcomp = sum(PI) )
# Product_ID t nPIcomp
#1 1 1 2
#2 1 2 4
#3 2 1 1
#4 2 2 1
#5 2 3 3
Upvotes: 1
Reputation: 70643
Something like this?
x <- read.table(text = "Product_ID PI t
1 0 1
1 1 1
1 1 1
1 0 2
1 1 2
1 1 2
1 1 2
1 1 2
2 0 1
2 1 1
2 0 2
2 1 2
2 0 3
2 1 3
2 1 3
2 1 3", header = TRUE)
find.count <- rle(x$PI)
count <- find.count$lengths[find.count$values == 1]
x[x$PI == 0, "nPIcomp"] <- count
Product_ID PI t nPIcomp
1 1 0 1 2
2 1 1 1 NA
3 1 1 1 NA
4 1 0 2 4
5 1 1 2 NA
6 1 1 2 NA
7 1 1 2 NA
8 1 1 2 NA
9 2 0 1 1
10 2 1 1 NA
11 2 0 2 1
12 2 1 2 NA
13 2 0 3 3
14 2 1 3 NA
15 2 1 3 NA
16 2 1 3 NA
Upvotes: 3