Reputation: 7878
Given a sorted list such as [1.1, 2.2, 3.3]
and a bounding value such as math.pi*2
, return the closest value for any given value from [0 - math.pi*2)
The function should return the index of the value, so that f(1.2)
returns 0
while f(2.1)
returns 1
, and f(6.0)
should wrap around at math.pi*2
and return 0
, being closer to 1.1 than to 3.3 given the bounding value. Just to be entirely explicit, this function should also wrap around on on the lower end, so that f(1.0, [5.0, 6.0], bound = math.pi*2)
returns 1
.
The use case is to map an arbitrary angle in radians to the nearest existing valid angle in the list. I've written this kind of function a couple of times in python with bisect
, but the code always ends up offending my aesthetic senses. The high complexity and number of edge cases seems out of proportion with the intuitive simplicity of the function. So I am asking if anyone can come up with a pleasing implementation, both in terms of efficiency and elegance.
Upvotes: 4
Views: 1517
Reputation: 21956
Here's a more elegant approach. Eliminate the edge cases by wrapping the number line around:
from bisect import bisect_right
def circular_search(points, bound, value):
##
## normalize / sort input points to [0, bound)
points = sorted(list(set([i % bound for i in points])))
##
## normalize search value to [0, bound)
value %= bound
##
## wrap the circle left and right
ext_points = [i-bound for i in points] + points + [i+bound for i in points]
##
## identify the "nearest not less than" point; no
## edge cases since points always exist above & below
index = bisect_right(ext_points, value)
##
## choose the nearest point; will always be either the
## index found by bisection, or the next-lower index
if abs(ext_points[index]-value) >= abs(ext_points[index-1]-value):
index -= 1
##
## map index to [0, npoints)
index %= len(points)
##
## done
return points[index]
As written, works unless inputs are wonky like no points, or bound==0.
Upvotes: 2
Reputation: 375535
The easiest way would be just to use min:
def angular_distance(theta_1, theta_2, mod=2*math.pi):
difference = abs(theta_1 % mod - theta_2 % mod)
return min(difference, mod - difference)
def nearest_angle(L, theta):
return min(L, key=lambda theta_1: angular_distance(theta, theta_2))
In [11]: min(L, key=lambda theta: angular_distance(theta, 1))
Out[11]: 1.1
Making use of the sorted-ness of the list you can use the bisect module:
from bisect import bisect_left
def nearest_angle_b(theta, sorted_list, mod=2*math.pi):
i1 = bisect_left(sorted_list, theta % mod)
if i1 == 0:
i1, i2 = len(sorted_list) - 1, 0
elif i1 == len(sorted_list):
i1, i2 = i1 - 1, 0
else:
i2 = (i1 + 1) % len(sorted_list)
return min((angular_distance(theta, L[i], mod), i, L[i])
for i in [i1, i2])
Returns the distance, the index and the angle in the list to which it's closest to.
Upvotes: 0
Reputation: 1122182
Use the bisect
module as a base:
from bisect import bisect_left
import math
def f(value, sorted_list, bound=math.pi * 2):
value %= bound
index = bisect_left(sorted_list, value)
if index == 0 or index == len(sorted_list):
return min((abs(bound + sorted_list[0] - value), 0), (abs(sorted_list[-1] - value), len(sorted_list) - 1))[1]
return min((index - 1, index),
key=lambda i: abs(sorted_list[i] - value) if i >= 0 else float('inf'))
Demo:
>>> sorted_list = [1.1, 2.2, 3.3]
>>> f(1.2, sorted_list)
0
>>> f(2.1, sorted_list)
1
>>> f(6.0, sorted_list)
0
>>> f(5.0, sorted_list)
2
Upvotes: 1