Reputation: 32426
An example dataframe with categorical variables catA, catB, and catC. Obs is some observed value.
catA <- rep(factor(c("a","b","c")), length.out=100)
catB <- rep(factor(1:4), length.out=100)
catC <- rep(factor(c("d","e","f")), length.out=100)
obs <- runif(100,0,100)
dat <- data.frame(catA, catB, catC, obs)
All possible subsets of data by categorical variables.
allsubs <- expand.grid(catA = c(NA,levels(catA)), catB = c(NA,levels(catB)),
catC = c(NA,levels(catC)))
> head(allsubs, n=10)
catA catB catC
1 <NA> <NA> <NA>
2 a <NA> <NA>
3 b <NA> <NA>
4 c <NA> <NA>
5 <NA> 1 <NA>
6 a 1 <NA>
7 b 1 <NA>
8 c 1 <NA>
9 <NA> 2 <NA>
10 a 2 <NA>
Now, what is the easiest way to create an output dataframe with a results column containing results from a function applied to the corresponding subset (defined in each row by the combination of cat variables) of dat. So the output should look like the following dataframe, 'whatiwant', where the results column will contain the results of a function applied to each subset.
> whatiwant
catA catB catC results
1 <NA> <NA> <NA> *
2 a <NA> <NA> *
3 b <NA> <NA> *
4 c <NA> <NA> *
5 <NA> 1 <NA> *
6 a 1 <NA> *
7 b 1 <NA> *
8 c 1 <NA> *
9 <NA> 2 <NA> *
10 a 2 <NA> *
So, if the function applied was 'mean', the results should be:
dat$results[1] = mean(subset(dat,)$obs)
dat$results[2] = mean(subset(dat, catA=="a")$obs)
etc, etc..
Upvotes: 3
Views: 2255
Reputation: 2094
Using only vectorized functions and base R
# Find all possible subsets of your data
combVars <- c("catA", "catB", "catC")
subsets <- lapply(0:length(combVars), combn, x = combVars, simplify = FALSE)
subsets <- do.call(c, subsets)
# Calculate means by each subset
meanValues <- lapply(subsets, function(x) aggregate(dat[["obs"]], by = dat[x], FUN = mean))
# Pull them all into one dataframe
Reduce(function(x,y) merge(x,y,all=TRUE), meanValues)
Upvotes: 1
Reputation: 32426
An alternative approach, one function to get all combinations of variables and another to apply a function over all subsets. The combinations function was stolen from another post...
## return all combinations of vector up to maximum length n
multicombn <- function(dat, n) {
unlist(lapply(1:n, function(x) combn(dat, x, simplify=F)), recursive=F)
}
For allsubs, vars is of form c("catA","catB","catC"), out.name = "mean".
func needs to be written in form that ddply would take,
func=function(x) mean(x$obs, na.rm=TRUE)
library(plyr)
allsubs <- function(indat, vars, func=NULL, out.name=NULL) {
results <- data.frame()
nvars <- rev(multicombn(vars,length(vars)))
for(i in 1:length(nvars)) {
results <-
rbind.fill(results, ddply(indat, unlist(nvars[i]), func))
}
if(!missing(out.name)) names(results)[length(vars)+1] <- out.name
results
}
One difference between this answer and shwaund's, this does not return rows for empty subsets, so no NAs in results column.
allsubs(dat, c("catA","catB","catc"), func, out.name="mean")
> head(allsubs(dat, vars, func, out.name = "mean"),20)
catA catB catC mean
1 a 1 d 56.65909
2 a 2 d 54.98116
3 a 3 d 37.52655
4 a 4 d 58.29034
5 b 1 e 52.88945
6 b 2 e 50.43122
7 b 3 e 52.57115
8 b 4 e 59.45348
9 c 1 f 52.41637
10 c 2 f 34.58122
11 c 3 f 46.80256
12 c 4 f 51.58668
13 <NA> 1 d 56.65909
14 <NA> 1 e 52.88945
15 <NA> 1 f 52.41637
16 <NA> 2 d 54.98116
17 <NA> 2 e 50.43122
18 <NA> 2 f 34.58122
19 <NA> 3 d 37.52655
20 <NA> 3 e 52.57115
Upvotes: 2
Reputation: 3601
This isn't the cleanest solution, but I think it gets close to what you want.
getAllSubs <- function(df, lookup, fun) {
out <- lapply(1:nrow(lookup), function(i) {
df_new <- df
if(length(na.omit(unlist(lookup[i,]))) > 0) {
for(j in colnames(lookup)[which(!is.na(unlist(lookup[i,])))]) {
df_new <- df_new[df_new[,j] == lookup[i,j],]
}
}
fun(df_new)
})
if(mean(sapply(out, length) ==1) == 1) {
out <- unlist(out)
} else {
out <- do.call("rbind", out)
}
final <- cbind(lookup, out)
final[is.na(final)] <- NA
final
}
As it is currently written you have to construct the lookup table beforehand, but you could just as easily move that construction into the function itself. I added a few lines at the end to make sure it could accomodate outputs of different lengths and so NaNs were turned into NAs, just because that seemed to create a cleaner output. As it is currently written, it applies the function to the entire original data frame in cases where all columns are NA.
dat_out <- getAllSubs(dat, allsubs, function(x) mean(x$obs, na.rm = TRUE))
head(dat_out,20)
catA catB catC out
1 <NA> <NA> <NA> 47.25446
2 a <NA> <NA> 51.54226
3 b <NA> <NA> 46.45352
4 c <NA> <NA> 43.63767
5 <NA> 1 <NA> 47.23872
6 a 1 <NA> 66.59281
7 b 1 <NA> 32.03513
8 c 1 <NA> 40.66896
9 <NA> 2 <NA> 45.16588
10 a 2 <NA> 50.59323
11 b 2 <NA> 51.02013
12 c 2 <NA> 33.15251
13 <NA> 3 <NA> 51.67809
14 a 3 <NA> 48.13645
15 b 3 <NA> 57.92084
16 c 3 <NA> 49.27710
17 <NA> 4 <NA> 44.93515
18 a 4 <NA> 40.36266
19 b 4 <NA> 44.26717
20 c 4 <NA> 50.74718
Upvotes: 1
Reputation: 650
ans <- with(dat, tapply(obs, list(catA, catB, catC), mean))
ans <- data.frame(expand.grid(dimnames(ans)), results=c(ans))
names(ans)[1:3] <- names(dat)[1:3]
str(ans)
# 'data.frame': 36 obs. of 4 variables:
# $ catA : Factor w/ 3 levels "a","b","c": 1 2 3 1 2 3 1 2 3 1 ...
# $ catB : Factor w/ 4 levels "1","2","3","4": 1 1 1 2 2 2 3 3 3 4 ...
# $ catC : Factor w/ 3 levels "d","e","f": 1 1 1 1 1 1 1 1 1 1 ...
# $ results: num 69.7 NA NA 55.3 NA ...
Upvotes: 5