Reputation: 202
I'm analyzing some bivariate data with copulas. In order to simulate some copulas I need to estimate the corresponding parameters.
For example:
gumbel.fit<-fit.AC(Udata, "gumbel")
gumbel.parameter<-gumbel.fit$fit$par
or
clayton.fit<-fit.AC(Udata, "clayton")
clayton.parameter<-clayton.fit$fit$par
But this can't be applied to Frank copula, therefor I wonder how to estimate the paramter?
Upvotes: 1
Views: 1652
Reputation: 16
You can estimate any copula parameter using for example "CDvine" package in R. In this case you can select any available method. There is a "Tau" estimation method or the pseudo-observation maximum likelihood method. Currently, to my best of knowledge, there are no further estimation methods available in the R.
Upvotes: 0
Reputation: 6692
Please have a look at the R
package copula
which provides various estimators including detailed examples (specifically, numerically stable MLE).
Upvotes: 0
Reputation: 202
I found the answer in the CDVine package BiCopEst(u1,u2,5,method="mle")
Upvotes: 1