Reputation: 3894
I have a program that behaves weirdly and probably has undefined behaviour. Sometimes, the return address of a function seems to be changed, and I don't know what's causing it.
The return address is always changed to the same address, an assertion inside a function the control shouldn't be able to reach. I've been able to stop the program with a debugger to see that when it's supposed to execute a return statement, it jumps straight to the line with the assertion instead.
This code approximates how my function works.
int foo(Vector t)
double sum = 0;
for(unsgined int i=0; i<t.size();++i){
sum += t[i];
}
double limit = bar(); // bar returns a value between 0 and 1
double a=0;
for(double i=0; i<10; i++){
a += f(i)/sum; // f(1)/sum + ... + f(10)/sum = 1.0f
if(a>3)return a;
}
//shoudn'get here
assert(false); // ... then this line is executed
}
This is what I've tried so far:
[]
operators with .at
to prevent accidentily writing into memory-Wall
and -Werror
and -pedantic-errors
in gccI get a couple of invalid read of size 8
, but they seem to originate from qt, so I'm not sure what to make of it. Could this be the problem?
The error happens only occasionally when I have run the program for a while and give it certain input values, and more often in a release build than in a debug build.
EDIT: So I managed to reproduce the problem in a console application (no qt loaded) I then manages to simulate events that caused the problem.
Like some of you suggested, it turns out I misjudged what was actually causing it to reach the assertion, probably due to my lack of experience with qt's debugger. The actual problem was a floating point error in the double i used as a loop condition.
I was implementing softmax, but exp(x) got rounded to zero with particular inputs.
Now, as I have solved the problem, I might rephrase it. Is there a method for checking problems like rounding errors automatically. I.e breaking on 0/0 for instance?
Upvotes: 2
Views: 217
Reputation: 9097
The short answer is:
The most portable way of determining if a floating-point exceptional condition has occurred is to use the floating-point exception facilities provided by C in fenv.h.
although, unfortunately, this is far from being perfect.
I suggest you to read both https://www.securecoding.cert.org/confluence/display/seccode/FLP04-C.+Check+floating-point+inputs+for+exceptional+values and https://www.securecoding.cert.org/confluence/display/seccode/FLP03-C.+Detect+and+handle+floating-point+errors which concisely address the exact question you are posing:
Is there a method for checking problems like rounding errors automatically.
Upvotes: 1