Reputation: 612
I want to do a list of concatenations in Haskell. I have [1,2,3] and [4,5,6] and i want to produce [14,15,16,24,25,26,34,35,36]. I know I can use zipWith or sth, but how to do equivalent of: foreach in first_array foreach in second_array
I guess I have to use map and half curried functions, but can't really make it alone :S
Upvotes: 8
Views: 5943
Reputation: 1049
The general solution of the concatenation of two lists of integers is this:
concatInt [] xs = xs
concatInt xs [] = xs
concatInt xs ys = [join x y | x <- xs , y <- ys ]
where
join x y = firstPart + secondPart
where
firstPart = x * 10 ^ lengthSecondPart
lengthSecondPart = 1 + (truncate $ logBase 10 (fromIntegral y))
secondPart = y
Example: concatInt [1,2,3] [4,5,6] == [14,15,16,24,25,26,34,35,36]
More complex example: concatInt [0,2,10,1,100,200] [24,2,999,44,3] == [24,2,999,44,3,224,22,2999,244,23,1024,102,10999,1044,103,124,12,1999,144,13,10024,1002,100999,10044,1003,20024,2002,200999,20044,2003]
Upvotes: 0
Reputation: 43310
You can exploit the fact that lists are monads and use the do notation:
do
a <- [1, 2, 3]
b <- [4, 5, 6]
return $ a * 10 + b
You can also exploit the fact that lists are applicative functors (assuming you have Control.Applicative
imported):
(+) <$> (*10) <$> [1,2,3] <*> [4,5,6]
Both result in the following:
[14,15,16,24,25,26,34,35,36]
Upvotes: 17
Reputation: 5715
Because do
notation and the list comprehension have been said already. The only other option I know is via the liftM2
combinator from Control.Monad
. Which is the exact same thing as the previous two.
liftM2 (\a b -> a * 10 + b) [1..3] [4..6]
Upvotes: 1
Reputation: 30227
Nested loops correspond to nested uses of map
or similar functions. First approximation:
notThereYet :: [[Integer]]
notThereYet = map (\x -> map (\y -> x*10 + y) [4, 5, 6]) [1, 2, 3]
That gives you nested lists, which you can eliminate in two ways. One is to use the concat :: [[a]] -> [a]
function:
solution1 :: [Integer]
solution1 = concat (map (\x -> map (\y -> x*10 + y) [4, 5, 6]) [1, 2, 3])
Another is to use this built-in function:
concatMap :: (a -> [b]) -> [a] -> [b]
concatMap f xs = concat (map f xs)
Using that:
solution2 :: [Integer]
solution2 = concatMap (\x -> map (\y -> x*10 + y) [4, 5, 6]) [1, 2, 3]
Other people have mentioned list comprehensions and the list monad, but those really bottom down to nested uses of concatMap
.
Upvotes: 2
Reputation: 682
If you really like seeing for
in your code you can also do something like this:
for :: [a] -> (a -> b) -> [b]
for = flip map
nested :: [Integer]
nested = concat nested_list
where nested_list =
for [1, 2, 3] (\i ->
for [4, 5, 6] (\j ->
i * 10 + j
)
)
You could also look into for
and Identity
for a more idiomatic approach.
Upvotes: 5
Reputation: 27190
You could use list comprehension to do it:
[x * 10 + y | x <- [1..3], y <- [4..6]]
In fact this is a direct translation of a nested loop, since the first one is the outer / slower index, and the second one is the faster / inner index.
Upvotes: 22