Reputation: 597
I am trying to implement a function primeFac()
that takes as input a positive integer n
and returns a list containing all the numbers in the prime factorization of n
.
I have gotten this far but I think it would be better to use recursion here, not sure how to create a recursive code here, what would be the base case? to start with.
My code:
def primes(n):
primfac = []
d = 2
while (n > 1):
if n%d==0:
primfac.append(d)
# how do I continue from here... ?
Upvotes: 28
Views: 108358
Reputation: 19
Here is an efficient way to accomplish what you need:
def prime_factors(n):
l = []
if n < 2: return l
if n&1==0:
l.append(2)
while n&1==0: n>>=1
i = 3
m = int(math.sqrt(n))+1
while i < m:
if n%i==0:
l.append(i)
while n%i==0: n//=i
i+= 2
m = int(math.sqrt(n))+1
if n>2: l.append(n)
return l
prime_factors(198765430488765430290) = [2, 3, 5, 7, 11, 13, 19, 23, 3607, 3803, 52579]
Upvotes: 0
Reputation: 134
def prime_factors(num, dd=2):
while dd <= num and num>1:
if num % dd == 0:
num //= dd
yield dd
dd +=1
Lot of answers above fail on small primes, e.g. 3, 5 and 7. The above is succinct and fast enough for ordinary use.
print list(prime_factors(3))
[3]
Upvotes: -1
Reputation: 5
I would like to share my code for finding the prime factors of number given input by the user:
a = int(input("Enter a number: "))
def prime(a):
b = list()
i = 1
while i<=a:
if a%i ==0 and i!=1 and i!=a:
b.append(i)
i+=1
return b
c = list()
for x in prime(a):
if len(prime(x)) == 0:
c.append(x)
print(c)
Upvotes: -1
Reputation: 17851
Here is my version of factorization by trial division, which incorporates the optimization of dividing only by two and the odd integers proposed by Daniel Fischer:
def factors(n):
f, fs = 3, []
while n % 2 == 0:
fs.append(2)
n /= 2
while f * f <= n:
while n % f == 0:
fs.append(f)
n /= f
f += 2
if n > 1: fs.append(n)
return fs
An improvement on trial division by two and the odd numbers is wheel factorization, which uses a cyclic set of gaps between potential primes to greatly reduce the number of trial divisions. Here we use a 2,3,5-wheel:
def factors(n):
gaps = [1,2,2,4,2,4,2,4,6,2,6]
length, cycle = 11, 3
f, fs, nxt = 2, [], 0
while f * f <= n:
while n % f == 0:
fs.append(f)
n /= f
f += gaps[nxt]
nxt += 1
if nxt == length:
nxt = cycle
if n > 1: fs.append(n)
return fs
Thus, print factors(13290059)
will output [3119, 4261]
. Factoring wheels have the same O(sqrt(n)) time complexity as normal trial division, but will be two or three times faster in practice.
I've done a lot of work with prime numbers at my blog. Please feel free to visit and study.
Upvotes: 5
Reputation: 1008
This is a comprehension based solution, it might be the closest you can get to a recursive solution in Python while being possible to use for large numbers.
You can get proper divisors with one line:
divisors = [ d for d in xrange(2,int(math.sqrt(n))) if n % d == 0 ]
then we can test for a number in divisors to be prime:
def isprime(d): return all( d % od != 0 for od in divisors if od != d )
which tests that no other divisors divides d.
Then we can filter prime divisors:
prime_divisors = [ d for d in divisors if isprime(d) ]
Of course, it can be combined in a single function:
def primes(n):
divisors = [ d for d in range(2,n//2+1) if n % d == 0 ]
return [ d for d in divisors if \
all( d % od != 0 for od in divisors if od != d ) ]
Here, the \ is there to break the line without messing with Python indentation.
Upvotes: 15
Reputation: 1
This is the code I made. It works fine for numbers with small primes, but it takes a while for numbers with primes in the millions.
def pfactor(num):
div = 2
pflist = []
while div <= num:
if num % div == 0:
pflist.append(div)
num /= div
else:
div += 1
# The stuff afterwards is just to convert the list of primes into an expression
pfex = ''
for item in list(set(pflist)):
pfex += str(item) + '^' + str(pflist.count(item)) + ' * '
pfex = pfex[0:-3]
return pfex
Upvotes: -1
Reputation: 25
prime factors of a number:
def primefactors(x):
factorlist=[]
loop=2
while loop<=x:
if x%loop==0:
x//=loop
factorlist.append(loop)
else:
loop+=1
return factorlist
x = int(input())
alist=primefactors(x)
print(alist)
You'll get the list. If you want to get the pairs of prime factors of a number try this: http://pythonplanet.blogspot.in/2015/09/list-of-all-unique-pairs-of-prime.html
Upvotes: 1
Reputation: 2950
Simple way to get the desired solution
def Factor(n):
d = 2
factors = []
while n >= d*d:
if n % d == 0:
n//=d
# print(d,end = " ")
factors.append(d)
else:
d = d+1
if n>1:
# print(int(n))
factors.append(n)
return factors
Upvotes: -1
Reputation: 132720
The primefac module does factorizations with all the fancy techniques mathematicians have developed over the centuries:
#!python
import primefac
import sys
n = int( sys.argv[1] )
factors = list( primefac.primefac(n) )
print '\n'.join(map(str, factors))
Upvotes: 18
Reputation: 7263
Most of the answer are making things too complex. We can do this
def prime_factors(n):
num = []
#add 2 to list or prime factors and remove all even numbers(like sieve of ertosthenes)
while(n%2 == 0):
num.append(2)
n /= 2
#divide by odd numbers and remove all of their multiples increment by 2 if no perfectlly devides add it
for i in xrange(3, int(sqrt(n))+1, 2):
while (n%i == 0):
num.append(i)
n /= i
#if no is > 2 i.e no is a prime number that is only divisible by itself add it
if n>2:
num.append(n)
print (num)
Algorithm from GeeksforGeeks
Upvotes: 1
Reputation: 7985
I've tweaked @user448810's answer to use iterators from itertools (and python3.4, but it should be back-portable). The solution is about 15% faster.
import itertools
def factors(n):
f = 2
increments = itertools.chain([1,2,2], itertools.cycle([4,2,4,2,4,6,2,6]))
for incr in increments:
if f*f > n:
break
while n % f == 0:
yield f
n //= f
f += incr
if n > 1:
yield n
Note that this returns an iterable, not a list. Wrap it in list() if that's what you want.
Upvotes: 7
Reputation: 1
from sets import Set
# this function generates all the possible factors of a required number x
def factors_mult(X):
L = []
[L.append(i) for i in range(2,X) if X % i == 0]
return L
# this function generates list containing prime numbers upto the required number x
def prime_range(X):
l = [2]
for i in range(3,X+1):
for j in range(2,i):
if i % j == 0:
break
else:
l.append(i)
return l
# This function computes the intersection of the two lists by invoking Set from the sets module
def prime_factors(X):
y = Set(prime_range(X))
z = Set(factors_mult(X))
k = list(y & z)
k = sorted(k)
print "The prime factors of " + str(X) + " is ", k
# for eg
prime_factors(356)
Upvotes: -1
Reputation: 182
def get_prime_factors(number):
"""
Return prime factor list for a given number
number - an integer number
Example: get_prime_factors(8) --> [2, 2, 2].
"""
if number == 1:
return []
# We have to begin with 2 instead of 1 or 0
# to avoid the calls infinite or the division by 0
for i in xrange(2, number):
# Get remainder and quotient
rd, qt = divmod(number, i)
if not qt: # if equal to zero
return [i] + get_prime_factors(rd)
return [number]
Upvotes: 3
Reputation: 51
Most of the above solutions appear somewhat incomplete. A prime factorization would repeat each prime factor of the number (e.g. 9 = [3 3])
.
Also, the above solutions could be written as lazy functions for implementation convenience.
The use sieve Of Eratosthenes
to find primes to test is optimal, but; the above implementation used more memory than necessary.
I'm not certain if/how "wheel factorization"
would be superior to applying only prime factors, for division tests of n.
While these solution are indeed helpful, I'd suggest the following two functions -
Function-1 :
def primes(n):
if n < 2: return
yield 2
plist = [2]
for i in range(3,n):
test = True
for j in plist:
if j>n**0.5:
break
if i%j==0:
test = False
break
if test:
plist.append(i)
yield i
Function-2 :
def pfactors(n):
for p in primes(n):
while n%p==0:
yield p
n=n//p
if n==1: return
list(pfactors(99999))
[3, 3, 41, 271]
3*3*41*271
99999
list(pfactors(13290059))
[3119, 4261]
3119*4261
13290059
Upvotes: 5
Reputation: 183873
A simple trial division:
def primes(n):
primfac = []
d = 2
while d*d <= n:
while (n % d) == 0:
primfac.append(d) # supposing you want multiple factors repeated
n //= d
d += 1
if n > 1:
primfac.append(n)
return primfac
with O(sqrt(n))
complexity (worst case). You can easily improve it by special-casing 2 and looping only over odd d
(or special-casing more small primes and looping over fewer possible divisors).
Upvotes: 55
Reputation: 26129
def factorize(n):
for f in range(2,n//2+1):
while n%f == 0:
n //= f
yield f
It's slow but dead simple. If you want to create a command-line utility, you could do:
import sys
[print(i) for i in factorize(int(sys.argv[1]))]
Upvotes: 0
Reputation: 250871
You can use sieve Of Eratosthenes to generate all the primes up to (n/2) + 1
and then use a list comprehension to get all the prime factors:
def rwh_primes2(n):
# http://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
""" Input n>=6, Returns a list of primes, 2 <= p < n """
correction = (n%6>1)
n = {0:n,1:n-1,2:n+4,3:n+3,4:n+2,5:n+1}[n%6]
sieve = [True] * (n/3)
sieve[0] = False
for i in xrange(int(n**0.5)/3+1):
if sieve[i]:
k=3*i+1|1
sieve[ ((k*k)/3) ::2*k]=[False]*((n/6-(k*k)/6-1)/k+1)
sieve[(k*k+4*k-2*k*(i&1))/3::2*k]=[False]*((n/6-(k*k+4*k-2*k*(i&1))/6-1)/k+1)
return [2,3] + [3*i+1|1 for i in xrange(1,n/3-correction) if sieve[i]]
def primeFacs(n):
primes = rwh_primes2((n/2)+1)
return [x for x in primes if n%x == 0]
print primeFacs(99999)
#[3, 41, 271]
Upvotes: -2