Reputation: 5044
I have a question about templates and it is in the code:
template<typename T>
struct foo {
T t;
};
template<typename FooType>
struct bar {
T t; //<- how to get T here (preferably without using typedef in foo)
};
Upvotes: 0
Views: 180
Reputation: 477512
Here's a generic template argument type extractor:
#include <tuple>
template <typename> struct tuplify;
template <template <typename...> class Tpl, typename ...Args>
struct tuplify<Tpl<Args...>>
{
using type = std::tuple<Args...>;
};
template <typename T, unsigned int N>
using get_template_argument
= typename std::tuple_element<N, typename tuplify<T>::type>::type;
Usage:
get_template_argument<std::vector<int>, 1> a; // is a std::allocator<int>
Or in your case:
get_template_argument<FooType, 0> t;
Upvotes: 5
Reputation: 320719
If you don't want or can't add a typedef to foo
, you can additionally write an independent "extractor" template
template <typename T> struct ExtractT;
template <typename T> struct ExtractT<foo<T> > {
typedef T type;
};
and use it as
template<typename FooType>
struct bar {
typename ExtractT<FooType>::type t;
};
You can take that ExtractT
one step further and decouple it from foo
template <typename T> struct ExtractT;
template <template <typename> class C, typename T> struct ExtractT<C<T> > {
typedef T type;
};
and so on until you reinvent something from Boost or C++11 standard library :) BTW, this feels like something that should already be available in form of a more generic solution....
Upvotes: 1
Reputation: 126542
If I understood your question correctly, you could use template specialization as follows. Given your foo<>
class template:
template<typename T>
struct foo {
T t;
};
Define a bar<>
primary template and a corresponding specialization this way:
template<typename FooType>
struct bar;
template<typename T>
struct bar<foo<T>> {
T t; // T will be int if the template argument is foo<int>
};
Under the assumption that you are always supposed to instantiate bar
by providing an instance of foo<>
as the type argument, you can leave the primary template undefined.
The specialization will match the foo<T>
pattern, thus giving you the type with which foo<>
is instantiated in T
.
Here is how you could test the validity of this approach with a simple program:
#include <type_traits>
int main()
{
bar<foo<int>> b;
// This will not fire, proving T was correctly deduced to be int
static_assert(std::is_same<decltype(b.t), int>::value, "!");
}
Here is the corresponding live example.
Upvotes: 1