Reputation: 3547
I was wondering if anyone has any experience with creating a type-parametrized type hierarchy? I am fairly certain this is acheivable as a result of scala's pseudo-unification of packages & static objects.
The specific use case I have in mind is parametrizing an id type over an application framework so you can use your choice of int
/long
/java.util.UUID
/BSONId
/whatever. Consider as a rough example:
package foolib.generic
trait GenEntity[I] { def id: I }
trait GenRepository[I] { def getById(id: I): GenEntity[I] }
trait FooTaxonomy[I] {
type Entity = GenEntity[I]
type Repository = GenRepository[I]
object subpackage extends generic.subpackage.SubpackageTaxonomy[I]
}
You would then configure the hierarchy for use in a project with something like:
package object myprj {
object foolib extends foolib.generic.FooTaxonomy[java.util.UUID]
// Whee!
val someEntity = new myprj.foolib.Entity(java.util.UUID.randomUUID())
}
Are there any reasons this is a spectacularly bad idea? Any pitfalls/etc I should be aware of?
Upvotes: 1
Views: 111
Reputation: 10411
This approach would work but you may encounter problems when the number of type parameters increases. Perhaps a solution would be to use abstract type members instead of type parameters.
Another approach is to use the cake pattern which I think provides a better solution in your case. The exact logic of your code eludes me a bit, so this rewrite may not entirely represent your intention:
package foolib.generic
//defines common types used by all modules
trait CoreModule {
type Id // abstract type, not commited to any particular implementation
}
//module defining the EntityModule trait
trait EntityModule { this: CoreModule => //specifying core module as a dependency
trait GenEntity {
def id: Id
}
def mkEntity(id: Id): Entity //abstract way of creating an entity
}
//defines the GenRepository trait
trait RepositoryModule { this: EntityModule with CoreModule => //multiple dependencies
trait GenRepository {
def getById(id: Id): GenEntity
}
val repository: GenRepository //abstract way of obtaining a repository
}
//concrete implementation for entity
trait EntityImplModule extends EntityModule { this: CoreModule =>
case class Entity(val id: Id) extends GenEntity
def mkEntity(id: Id) = Entity(id)
}
//modules that provides a concrete implementation for GenRepository
trait RepositoryImplModule extends RepositoryModule { this: CoreModule with EntityModule =>
object RepositoryImpl extends GenRepository {
def getById(id: Id) = mkEntity(id)
}
}
//this unifies all your modules. You can also bind any dependencies and specify any types
object Universe
extends CoreModule
with EntityImplModule
with RepositoryImplModule {
type Id = java.util.UUID
val repository = RepositoryImpl
def mkEntity(id: Id) = Entity(id)
}
//usage
object Main {
import Universe._
import java.util.UUID
val entity = repository.getById(UUID.randomUUID())
println(entity.id)
}
This achieves your goal of creating an implementation independent of the concrete type Id and it also provides a nice way to do dependency injection.
The modules which provide a concrete implementation for GenRepository
, for instance, may require a concrete type for Id
. You can very well create another module which binds Id
to a concrete type and make the RepositoryImplModule
depend on the former module, thus specifying that this concrete implementation of GenRepository
will work only for a certain type of ids.
The Cake pattern is very powerful and has many variations. This video explains it quite well, I recommend you watch it if you are interested in this solution:
Cake Pattern: The Bakery from the Black Lagoon
Upvotes: 1