Reputation: 3573
I want an algorithm to find the longest substring of characters in a given string containing no repeating characters. I can think of an O(n*n) algorithm which considers all the substrings of a given string and calculates the number of non-repeating characters. For example, consider the string "AABGAKG" in which the longest substring of unique characters is 5 characters long which corresponds to BGAKG.
Can anyone suggest a better way to do it ?
Thanks
Edit: I think I'm not able to explain my question properly to others. You can have repeating characters in a substring (It's not that we need all distinct characters in a substring which geeksforgeeks solution does). The thing which I have to find is maximum no of non-repeating characters in any substring (it may be a case that some characters are repeated).
for eg, say string is AABGAKGIMN then BGAKGIMN is the solution.
Upvotes: 4
Views: 5954
Reputation: 3584
Let me contribute a little as well. I have this solution with complexity will be O(N). The algorithm’s space complexity will be O(K), where K is the number of distinct characters in the input string.
public static int NoRepeatSubstring(string str)
{
int start = 0;
int maxLen = 0;
Dictionary<char, int> dic = new Dictionary<char, int>();
for (int i = 0; i < str.Length; i++)
{
char rightChar = str[i];
// if the map already contains the 'rightChar', shrink the window from the beginning so that
// we have only one occurrence of 'rightChar'
if (dic.ContainsKey(rightChar))
{
// this is tricky; in the current window, we will not have any 'rightChar' after its previous index
// and if 'start' is already ahead of the last index of 'rightChar', we'll keep 'windowStart'
start = Math.Max(start, dic[rightChar] + 1);
}
if (dic.ContainsKey(str[i]))
dic[str[i]] = i;
else
dic.Add(str[i], i);
maxLen = Math.Max(maxLen, i - start + 1);
}
return maxLen;
}
And here some Unit Tests:
Assert.Equal(3, SlideWindow.NoRepeatSubstring("aabccbb"));
Assert.Equal(2, SlideWindow.NoRepeatSubstring("abbbb"));
Assert.Equal(3, SlideWindow.NoRepeatSubstring("abccde"));
Upvotes: 0
Reputation: 1
//Given a string ,find the longest sub-string with all distinct characters in it.If there are multiple such strings,print them all.
#include<iostream>
#include<cstring>
#include<array>
using namespace std;
//for a string with all small letters
//for capital letters use 65 instead of 97
int main()
{
array<int ,26> count ;
array<string,26>largest;
for(int i = 0 ;i <26;i++)
count[i]=0;
string s = "abcdefghijrrstqrstuvwxyzprr";
string out = "";
int k = 0,max=0;
for(int i = 0 ; i < s.size() ; i++)
{
if(count[s[i] - 97]==1)
{
int loc = out.find(s[i]);
for(int j=0;j<=loc;j++) count[out[j] - 97]=0;
if(out.size() > max)
{
max = out.size();
k=1;
largest[0] = out;
}
else if(out.size()==max) largest[k++]=out;
out.assign(out,loc+1,out.size()-loc-1);
}
out = out + s[i];
count[s[i] - 97]++;
}
for(int i=0;i<k;i++) cout<<largest[i] << endl;
//output will be
// abcdefghijr
// qrstuvwxyzp
}
Upvotes: 0
Reputation: 1269
Pretty tricky question, I give you an O(n) solution based on C#.
public string MaxSubStringKUniqueChars(string source, int k) {
if (string.IsNullOrEmpty(source) || k > source.Length) return string.Empty;
var start = 0;
var ret = string.Empty;
IDictionary<char, int> dict = new Dictionary<char, int>();
for (var i = 0; i < source.Length; i++)
{
if (dict.ContainsKey(source[i]))
{
dict[source[i]] = 1 + dict[source[i]];
}
else
{
dict[source[i]] = 1;
}
if (dict.Count == k + 1)
{
if (i - start > ret.Length)
{
ret = source.Substring(start, i - start);
}
while (dict.Count > k)
{
int count = dict[source[start]];
if (count == 1)
{
dict.Remove(source[start]);
}
else
{
dict[source[start]] = dict[source[start]] - 1;
}
start++;
}
}
}
//just for edge case like "aabbcceee", should return "cceee"
if (dict.Count == k && source.Length - start > ret.Length)
{
return source.Substring(start, source.Length - start);
}
return ret;
}
`
//This is the test case.
public void TestMethod1()
{
var ret = Item001.MaxSubStringKUniqueChars("aabcd", 2);
Assert.AreEqual("aab", ret);
ret = Item001.MaxSubStringKUniqueChars("aabbccddeee", 2);
Assert.AreEqual("ddeee", ret);
ret = Item001.MaxSubStringKUniqueChars("abccccccccaaddddeeee", 3);
Assert.AreEqual("ccccccccaadddd", ret);
ret = Item001.MaxSubStringKUniqueChars("ababcdcdedddde", 2);
Assert.AreEqual("dedddde", ret);
}
Upvotes: 2
Reputation: 375
Here is the solution in C#. I tested in in Visual studio 2012 and it works
public static int LongestSubstNonrepChar(string str) {
int curSize = 0;
int maxSize = 0;
int end = 0;
bool[] present = new bool[256];
for (int start = 0; start < str.Length; start++) {
end = start;
while (end < str.Length) {
if (!present[str[end]] && end < str.Length)
{
curSize++;
present[str[end]] = true;
end++;
}
else
break;
}
if (curSize > maxSize) {
maxSize = curSize;
}
//reset current size and the set all letter to false
curSize = 0;
for (int i = 0; i < present.Length; i++)
present[i] = false;
}
return maxSize;
}
Upvotes: 3
Reputation: 1
public static int longestNonDupSubstring(char[] str) {
int maxCount = 0;
int count = 0;
int maxEnd = 0;
for(int i=1;i < str.length;i++) {
if(str[i] != str[i-1]) {
count++;
}
if (str[i] == str[i-1]) {
if(maxCount<count) {
maxCount = count;
maxEnd = i;
}
count = 0;
}
if ( i!=str.length-1 && str[i] == str[i+1]) {
if(maxCount<count) {
maxCount = count - 1;
maxEnd = i-1;
}
count = 0;
}
}
int startPos = maxEnd - maxCount + 1;
for(int i = 0; i < maxCount; i++) {
System.out.print(str[startPos+i]);
}
return maxCount;
}
Upvotes: 0
Reputation: 171
for every start = 0 ... (n-1), try to expend end to the right-most position.
keep a bool array used[26] to remember if any character is already used. suppose currently we finished (start, end)
for start+1,
now we have check new (start, end). Total Complexity is O(N).
Upvotes: 3
Reputation: 137544
Let s be the given string, and n its length.
Define f(i) to be the longest [contiguous] substring of s ending at s[i] with distinct letters. That's unique and well-defined.
Compute f(i) for each i. It's easy to deduce from f(i-1) and s[i]:
The solution to your problem is any f(i) of maximal length (not necessarily unique).
You could implement this algorithm to run in O(n * 26) time, where 26 is the number of letters in the alphabet.
Upvotes: 0
Reputation: 89171
string MaximumSubstringNonRepeating(string text)
{
string max = null;
bool isCapture = false;
foreach (string s in Regex.Split(text, @"(.)\1+"))
{
if (!isCapture && (max == null || s.Length > max.Length))
{
max = s;
}
isCapture = !isCapture;
}
return max;
}
.
matches any character. ( )
captures that character. \1
matches the captured character again. +
repeats that character. The whole pattern matches two or more repetitions of any one character. "AA"
or ",,,,"
.
Regex.Split()
splits the string at every match of the pattern, and returns an array of the pieces that are in between. (One caveat: It also includes the captured substrings. In this case, the one character that are being repeated. The captures will show up in between the pieces. This is way I just added the isCapture
flag.)
The function cuts out all the repeated characters, and returns the longest piece that where in between the repeated each set of repeated characters.
>>> MaximumSubstringNonRepeating("AABGAKG") // "AA" is repeated
"BGAKG"
>>> MaximumSubstringNonRepeating("AABGAKGIMNZZZD") // "AA" and "ZZZ" are repeated.
"BGAKGIMN"
Upvotes: -1
Reputation: 11532
How about this:
public static String getLongestSubstringNoRepeats( String string ){
int iLongestSoFar = 0;
int posLongestSoFar = 0;
char charPrevious = 0;
int xCharacter = 0;
int iCurrentLength = 0;
while( xCharacter < string.length() ){
char charCurrent = string.charAt( xCharacter );
iCurrentLength++;
if( charCurrent == charPrevious ){
if( iCurrentLength > iLongestSoFar ){
iLongestSoFar = iCurrentLength;
posLongestSoFar = xCharacter;
}
iCurrentLength = 1;
}
charPrevious = charCurrent;
xCharacter++;
}
if( iCurrentLength > iLongestSoFar ){
return string.substring( posLongestSoFar );
} else {
return string.substring( posLongestSoFar, posLongestSoFar + iLongestSoFar );
}
}
Upvotes: 1