Reputation: 30097
I want to calculate perspective transform (a matrix for warpPerspective function) starting from angles of rotation and distance to the object.
How to do that?
I found the code somewhere on OE. Sample program is below:
#include <opencv2/objdetect/objdetect.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iostream>
#include <math.h>
using namespace std;
using namespace cv;
Mat frame;
int alpha_int;
int dist_int;
int f_int;
double w;
double h;
double alpha;
double dist;
double f;
void redraw() {
alpha = (double)alpha_int/1000.;
//dist = 1./(dist_int+1);
//dist = dist_int+1;
dist = dist_int-50;
f = f_int+1;
cout << "alpha = " << alpha << endl;
cout << "dist = " << dist << endl;
cout << "f = " << f << endl;
// Projection 2D -> 3D matrix
Mat A1 = (Mat_<double>(4,3) <<
1, 0, -w/2,
0, 1, -h/2,
0, 0, 1,
0, 0, 1);
// Rotation matrices around the X axis
Mat R = (Mat_<double>(4, 4) <<
1, 0, 0, 0,
0, cos(alpha), -sin(alpha), 0,
0, sin(alpha), cos(alpha), 0,
0, 0, 0, 1);
// Translation matrix on the Z axis
Mat T = (Mat_<double>(4, 4) <<
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, dist,
0, 0, 0, 1);
// Camera Intrisecs matrix 3D -> 2D
Mat A2 = (Mat_<double>(3,4) <<
f, 0, w/2, 0,
0, f, h/2, 0,
0, 0, 1, 0);
Mat m = A2 * (T * (R * A1));
cout << "R=" << endl << R << endl;
cout << "A1=" << endl << A1 << endl;
cout << "R*A1=" << endl << (R*A1) << endl;
cout << "T=" << endl << T << endl;
cout << "T * (R * A1)=" << endl << (T * (R * A1)) << endl;
cout << "A2=" << endl << A2 << endl;
cout << "A2 * (T * (R * A1))=" << endl << (A2 * (T * (R * A1))) << endl;
cout << "m=" << endl << m << endl;
Mat frame1;
warpPerspective( frame, frame1, m, frame.size(), INTER_CUBIC | WARP_INVERSE_MAP);
imshow("Frame", frame);
imshow("Frame1", frame1);
}
void callback(int, void* ) {
redraw();
}
void main() {
frame = imread("FruitSample_small.png", CV_LOAD_IMAGE_COLOR);
imshow("Frame", frame);
w = frame.size().width;
h = frame.size().height;
createTrackbar("alpha", "Frame", &alpha_int, 100, &callback);
dist_int = 50;
createTrackbar("dist", "Frame", &dist_int, 100, &callback);
createTrackbar("f", "Frame", &f_int, 100, &callback);
redraw();
waitKey(-1);
}
But unfortunately, this transform does something strange
Why? What is another half of image above when alpha>0
? And how to rotate around other axes? Why dist
works so strange?
Upvotes: 22
Views: 28486
Reputation: 73
Here's my Java conversion of the popular C++ example code answer. I have no way of knowing the veracity of this Java code, the original C++ code or the underlying equations, nor what the several comments about tweaking the equations mean other than to say it seems to work. This was for experimental purposes for playing with image processing with high school students.
package app;
import java.util.Arrays;
import java.util.stream.Collectors;
import org.opencv.highgui.HighGui;
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Size;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.core.Point;
import org.opencv.core.Mat;
import org.opencv.core.MatOfPoint2f;
import org.opencv.imgproc.Imgproc;
import org.opencv.videoio.VideoCapture;
public class App {
static {
System.loadLibrary(Core.NATIVE_LIBRARY_NAME); // Load the native library.
}
static void warpMatrix(Size sz,
double theta,
double phi,
double gamma,
double scale,
double fovy,
Mat M,
MatOfPoint2f corners) {
double st=Math.sin(Math.toRadians(theta));
double ct=Math.cos(Math.toRadians(theta));
double sp=Math.sin(Math.toRadians(phi));
double cp=Math.cos(Math.toRadians(phi));
double sg=Math.sin(Math.toRadians(gamma));
double cg=Math.cos(Math.toRadians(gamma));
double halfFovy=fovy*0.5;
double d=Math.hypot(sz.width,sz.height);
double sideLength=scale*d/Math.cos(Math.toRadians(halfFovy));
double h=d/(2.0*Math.sin(Math.toRadians(halfFovy)));
double n=h-(d/2.0);
double f=h+(d/2.0);
Mat F=new Mat(4,4, CvType.CV_64FC1);//Allocate 4x4 transformation matrix F
Mat Rtheta=Mat.eye(4,4, CvType.CV_64FC1);//Allocate 4x4 rotation matrix around Z-axis by theta degrees
Mat Rphi=Mat.eye(4,4, CvType.CV_64FC1);//Allocate 4x4 rotation matrix around X-axis by phi degrees
Mat Rgamma=Mat.eye(4,4, CvType.CV_64FC1);//Allocate 4x4 rotation matrix around Y-axis by gamma degrees
Mat T=Mat.eye(4,4, CvType.CV_64FC1);//Allocate 4x4 translation matrix along Z-axis by -h units
Mat P=Mat.zeros(4,4, CvType.CV_64FC1);//Allocate 4x4 projection matrix
// zeros instead of eye as in github manisoftwartist/perspectiveproj
//Rtheta Z
Rtheta.put(0,0, ct);
Rtheta.put(1,1, ct);
Rtheta.put(0,1, -st);
Rtheta.put(1,0, st);
//Rphi X
Rphi.put(1,1, cp);
Rphi.put(2,2, cp);
Rphi.put(1,2, -sp);
Rphi.put(2,1, sp);
//Rgamma Y
Rgamma.put(0,0, cg);
Rgamma.put(2,2, cg);
Rgamma.put(0,2, -sg); // sign reversed? Math different convention than computer graphics according to Wikipedia
Rgamma.put(2,0, sg);
//T
T.put(2,3, -h);
//P Perspective Matrix (see also in computer vision a camera matrix or (camera) projection matrix is a 3x4 matrix which describes the mapping of a pinhole camera from 3D points in the world to 2D points in an image.)
P.put(0,0, 1.0/Math.tan(Math.toRadians(halfFovy)));
P.put(1,1, 1.0/Math.tan(Math.toRadians(halfFovy)));
P.put(2,2, -(f+n)/(f-n));
P.put(2,3, -(2.0*f*n)/(f-n));
P.put(3,2, -1.0);
System.out.println("P " + P.dump());
System.out.println("T " + T.dump());
System.out.println("Rphi " + Rphi.dump());
System.out.println("Rtheta " + Rtheta.dump());
System.out.println("Rgamma " + Rgamma.dump());
//Compose transformations
//F=P*T*Rphi*Rtheta*Rgamma;//Matrix-multiply to produce master matrix
//gemm(Mat src1, Mat src2, double alpha, Mat src3, double beta, Mat dst)
//dst = alpha*src1.t()*src2 + beta*src3.t(); // w or w/o the .t() transpose
// D=α∗AB+β∗C
Mat F1 = new Mat();
Mat F2 = new Mat();
Mat F3 = new Mat();
Core.gemm(P, T, 1, new Mat(), 0, F1);
Core.gemm(F1, Rphi, 1, new Mat(), 0, F2);
Core.gemm(F2, Rtheta, 1, new Mat(), 0, F3);
Core.gemm(F3, Rgamma, 1, new Mat(), 0, F);
P.release();
T.release();
Rphi.release();
Rtheta.release();
Rgamma.release();
F1.release();
F2.release();
F3.release();
//Transform 4x4 points
double[] ptsIn = new double[4*3];
double[] ptsOut = new double[4*3];
double halfW=sz.width/2, halfH=sz.height/2;
ptsIn[0]=-halfW;ptsIn[ 1]= halfH;
ptsIn[3]= halfW;ptsIn[ 4]= halfH;
ptsIn[6]= halfW;ptsIn[ 7]=-halfH;
ptsIn[9]=-halfW;ptsIn[10]=-halfH;
ptsIn[2]=ptsIn[5]=ptsIn[8]=ptsIn[11]=0;//Set Z component to zero for all 4 components
Mat ptsInMat = new Mat(1,4,CvType.CV_64FC3);
ptsInMat.put(0,0, ptsIn);
Mat ptsOutMat = new Mat(1,4,CvType.CV_64FC3);
System.out.println("ptsInMat " + ptsInMat + " " + ptsInMat.dump());
System.out.println("F " + F + " " + F.dump());
Core.perspectiveTransform(ptsInMat, ptsOutMat, F);//Transform points
System.out.println("ptsOutMat " + ptsOutMat + " " + ptsOutMat.dump());
ptsInMat.release();
F.release();
ptsOutMat.get(0, 0, ptsOut);
ptsOutMat.release();
System.out.println(toString(ptsOut));
System.out.println(halfW + " " + halfH);
//Get 3x3 transform and warp image
Point[] ptsInPt2f = new Point[4];
Point[] ptsOutPt2f = new Point[4];
for(int i=0;i<4;i++){
ptsInPt2f[i] = new Point(0, 0);
ptsOutPt2f[i] = new Point(0, 0);
System.out.println(i);
System.out.println("points " + ptsIn [i*3+0] + " " + ptsIn [i*3+1]);
Point ptIn = new Point(ptsIn [i*3+0], ptsIn [i*3+1]);
Point ptOut = new Point(ptsOut[i*3+0], ptsOut[i*3+1]);
ptsInPt2f[i].x = ptIn.x+halfW;
ptsInPt2f[i].y = ptIn.y+halfH;
ptsOutPt2f[i].x = (ptOut.x+1) * sideLength*0.5;
ptsOutPt2f[i].y = (ptOut.y+1) * sideLength*0.5;
System.out.println("ptsOutPt2f " + ptsOutPt2f[i]);
}
Mat ptsInPt2fTemp = Mat.zeros(4,1,CvType.CV_32FC2);
ptsInPt2fTemp.put(0, 0,
ptsInPt2f[0].x,ptsInPt2f[0].y,
ptsInPt2f[1].x,ptsInPt2f[1].y,
ptsInPt2f[2].x,ptsInPt2f[2].y,
ptsInPt2f[3].x,ptsInPt2f[3].y);
Mat ptsOutPt2fTemp = Mat.zeros(4,1,CvType.CV_32FC2);
ptsOutPt2fTemp.put(0, 0,
ptsOutPt2f[0].x,ptsOutPt2f[0].y,
ptsOutPt2f[1].x,ptsOutPt2f[1].y,
ptsOutPt2f[2].x,ptsOutPt2f[2].y,
ptsOutPt2f[3].x,ptsOutPt2f[3].y);
System.out.println("ptsInPt2fTemp " + ptsInPt2fTemp.dump());
System.out.println("ptsOutPt2fTemp " + ptsOutPt2fTemp.dump());
Mat warp=Imgproc.getPerspectiveTransform(ptsInPt2fTemp, ptsOutPt2fTemp);
warp.copyTo(M);
ptsInPt2fTemp.release();
warp.release();
//Load corners vector
if(corners != null)
{
corners.put(0,0, ptsOutPt2f[0].x, ptsOutPt2f[0].y//Push Top Left corner
, ptsOutPt2f[1].x, ptsOutPt2f[1].y//Push Top Right corner
, ptsOutPt2f[2].x, ptsOutPt2f[2].y//Push Bottom Right corner
, ptsOutPt2f[3].x, ptsOutPt2f[3].y);//Push Bottom Left corner
}
ptsOutPt2fTemp.release();
System.out.println("corners " + corners + " " + corners.dump());
}
static void warpImage(Mat src,
double theta,
double phi,
double gamma,
double scale,
double fovy,
Mat dst,
Mat M,
MatOfPoint2f corners){
double halfFovy=fovy*0.5;
double d=Math.hypot(src.cols(),src.rows());
double sideLength=scale*d/Math.cos(Math.toRadians(halfFovy));
System.out.println("d " + d + ", sideLength " + sideLength);
warpMatrix(src.size(), theta, phi, gamma, scale, fovy, M, corners);//Compute warp matrix
System.out.println("M " + M + " " + M.dump());
Imgproc.warpPerspective(src, dst, M, new Size(sideLength,sideLength));//Do actual image warp
}
public static void main(String[] args)
{
int c = 0;
Mat m = new Mat();
Mat disp = new Mat();
Mat warp = new Mat();
MatOfPoint2f corners = new MatOfPoint2f(new Point(0,0),new Point(0,0),new Point(0,0),new Point(0,0));
String filename = "lena.jpg";
m = Imgcodecs.imread(filename, Imgcodecs.IMREAD_COLOR);
if (m.empty()) {
System.out.println("Error opening image");
System.exit(-1);
}
double scale = 1.;
double fovy = 53.;
double halfFovy=fovy*0.5;
VideoCapture cap;
cap = new VideoCapture();
cap.open(0);
cap.read(m);
warpImage(m, 5, 50, 0, 1, 30, disp, warp, corners); // fovy = rad2deg(arctan2(640,480)) = 53 ??
while(true) {
cap.read(m);
double d=Math.hypot(m.cols(),m.rows());
double sideLength=scale*d/Math.cos(Math.toRadians(halfFovy));
Imgproc.warpPerspective(m, disp, warp, new Size(sideLength,sideLength));//Do actual image warp
HighGui.imshow("Disp", disp);
HighGui.imshow("Orig", m);
c = HighGui.waitKey(25);
if (c != -1) break;
}
m.release();
disp.release();
warp.release();
corners.release();
System.exit(0);
}
static String toString(double[] array) {
return Arrays.stream(array)
.mapToObj(i -> String.format("%5.2f", i))
.collect(Collectors.joining(", ", "[", "]"));
//.collect(Collectors.joining("|", "|", "|"));
}
}
Upvotes: 0
Reputation: 13457
I have had the luxury of time to think out both math and code. I did this a year or two ago. I even typeset this in beautiful LaTeX.
I intentionally designed my solution so that no matter what rotation angles are provided, the entire input image is contained, centered, within the output frame, which is otherwise black.
The arguments to my warpImage
function are rotation angles in all 3 axes, the scale factor and the vertical field-of-view angle. The function outputs the warp matrix, the output image and the corners of the source image within the output image.
The LaTeX source code is here.
Here is a test application that warps the camera
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <math.h>
using namespace cv;
using namespace std;
static double rad2Deg(double rad){return rad*(180/M_PI);}//Convert radians to degrees
static double deg2Rad(double deg){return deg*(M_PI/180);}//Convert degrees to radians
void warpMatrix(Size sz,
double theta,
double phi,
double gamma,
double scale,
double fovy,
Mat& M,
vector<Point2f>* corners){
double st=sin(deg2Rad(theta));
double ct=cos(deg2Rad(theta));
double sp=sin(deg2Rad(phi));
double cp=cos(deg2Rad(phi));
double sg=sin(deg2Rad(gamma));
double cg=cos(deg2Rad(gamma));
double halfFovy=fovy*0.5;
double d=hypot(sz.width,sz.height);
double sideLength=scale*d/cos(deg2Rad(halfFovy));
double h=d/(2.0*sin(deg2Rad(halfFovy)));
double n=h-(d/2.0);
double f=h+(d/2.0);
Mat F=Mat(4,4,CV_64FC1);//Allocate 4x4 transformation matrix F
Mat Rtheta=Mat::eye(4,4,CV_64FC1);//Allocate 4x4 rotation matrix around Z-axis by theta degrees
Mat Rphi=Mat::eye(4,4,CV_64FC1);//Allocate 4x4 rotation matrix around X-axis by phi degrees
Mat Rgamma=Mat::eye(4,4,CV_64FC1);//Allocate 4x4 rotation matrix around Y-axis by gamma degrees
Mat T=Mat::eye(4,4,CV_64FC1);//Allocate 4x4 translation matrix along Z-axis by -h units
Mat P=Mat::zeros(4,4,CV_64FC1);//Allocate 4x4 projection matrix
//Rtheta
Rtheta.at<double>(0,0)=Rtheta.at<double>(1,1)=ct;
Rtheta.at<double>(0,1)=-st;Rtheta.at<double>(1,0)=st;
//Rphi
Rphi.at<double>(1,1)=Rphi.at<double>(2,2)=cp;
Rphi.at<double>(1,2)=-sp;Rphi.at<double>(2,1)=sp;
//Rgamma
Rgamma.at<double>(0,0)=Rgamma.at<double>(2,2)=cg;
Rgamma.at<double>(0,2)=-sg;Rgamma.at<double>(2,0)=sg;
//T
T.at<double>(2,3)=-h;
//P
P.at<double>(0,0)=P.at<double>(1,1)=1.0/tan(deg2Rad(halfFovy));
P.at<double>(2,2)=-(f+n)/(f-n);
P.at<double>(2,3)=-(2.0*f*n)/(f-n);
P.at<double>(3,2)=-1.0;
//Compose transformations
F=P*T*Rphi*Rtheta*Rgamma;//Matrix-multiply to produce master matrix
//Transform 4x4 points
double ptsIn [4*3];
double ptsOut[4*3];
double halfW=sz.width/2, halfH=sz.height/2;
ptsIn[0]=-halfW;ptsIn[ 1]= halfH;
ptsIn[3]= halfW;ptsIn[ 4]= halfH;
ptsIn[6]= halfW;ptsIn[ 7]=-halfH;
ptsIn[9]=-halfW;ptsIn[10]=-halfH;
ptsIn[2]=ptsIn[5]=ptsIn[8]=ptsIn[11]=0;//Set Z component to zero for all 4 components
Mat ptsInMat(1,4,CV_64FC3,ptsIn);
Mat ptsOutMat(1,4,CV_64FC3,ptsOut);
perspectiveTransform(ptsInMat,ptsOutMat,F);//Transform points
//Get 3x3 transform and warp image
Point2f ptsInPt2f[4];
Point2f ptsOutPt2f[4];
for(int i=0;i<4;i++){
Point2f ptIn (ptsIn [i*3+0], ptsIn [i*3+1]);
Point2f ptOut(ptsOut[i*3+0], ptsOut[i*3+1]);
ptsInPt2f[i] = ptIn+Point2f(halfW,halfH);
ptsOutPt2f[i] = (ptOut+Point2f(1,1))*(sideLength*0.5);
}
M=getPerspectiveTransform(ptsInPt2f,ptsOutPt2f);
//Load corners vector
if(corners){
corners->clear();
corners->push_back(ptsOutPt2f[0]);//Push Top Left corner
corners->push_back(ptsOutPt2f[1]);//Push Top Right corner
corners->push_back(ptsOutPt2f[2]);//Push Bottom Right corner
corners->push_back(ptsOutPt2f[3]);//Push Bottom Left corner
}
}
void warpImage(const Mat &src,
double theta,
double phi,
double gamma,
double scale,
double fovy,
Mat& dst,
Mat& M,
vector<Point2f> &corners){
double halfFovy=fovy*0.5;
double d=hypot(src.cols,src.rows);
double sideLength=scale*d/cos(deg2Rad(halfFovy));
warpMatrix(src.size(),theta,phi,gamma, scale,fovy,M,&corners);//Compute warp matrix
warpPerspective(src,dst,M,Size(sideLength,sideLength));//Do actual image warp
}
int main(void){
int c = 0;
Mat m, disp, warp;
vector<Point2f> corners;
VideoCapture cap(0);
while(c != 033 && cap.isOpened()){
cap >> m;
warpImage(m, 5, 50, 0, 1, 30, disp, warp, corners);
imshow("Disp", disp);
c = waitKey(1);
}
}
Upvotes: 63
Reputation: 152
I have gotten the similar problem. It problem turns out to be that after backprojection into 3D coordinates, since we don't have the intrinsic parameters of the camera, we use some guess value or even 1 as in your matrix A1
. During Rotation this could result in the image plane on the "wrong side" of the image plane, having negative depth value (z < 0
) . After projection, when you divide your coordinates with z
you get something weird like what you have shown.
So the solution turned out to be scale the focallength to be something relative to your image size.
say your image has dimension (H, W)
, set focallength to be for example H/3
.
In this case your A1
will be
[H/3, 0, W/2]
[0, H/3, H/2]
[0, 0, 1]
Upvotes: 1