Ben Schneider
Ben Schneider

Reputation: 31

CUDA 2D layered Texture from 3D array (float vs int)

I got the following program which is pretty much the SDK Sample "Simple Layered Texture".

// includes, system
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>

// includes, kernels
#include <cuda_runtime.h>

// includes, project
#include <helper_cuda.h>
#include <helper_functions.h>  // helper for shared that are common to CUDA SDK samples

#define EXIT_WAIVED 2

static char *sSDKname = "simpleLayeredTexture";

// includes, kernels
// declare texture reference for layered 2D float texture
// Note: The "dim" field in the texture reference template is now deprecated.
// Instead, please use a texture type macro such as cudaTextureType1D, etc.

typedef int TYPE;

texture<TYPE, cudaTextureType2DLayered> tex;

////////////////////////////////////////////////////////////////////////////////
//! Transform a layer of a layered 2D texture using texture lookups
//! @param g_odata  output data in global memory
////////////////////////////////////////////////////////////////////////////////
__global__ void
transformKernel(TYPE *g_odata, int width, int height, int layer)
{
    // calculate this thread's data point
    unsigned int x = blockIdx.x*blockDim.x + threadIdx.x;
    unsigned int y = blockIdx.y*blockDim.y + threadIdx.y;

    // 0.5f offset and division are necessary to access the original data points
    // in the texture (such that bilinear interpolation will not be activated).
    // For details, see also CUDA Programming Guide, Appendix D
    float u = (x+0.5f) / (float) width;
    float v = (y+0.5f) / (float) height;

    // read from texture, do expected transformation and write to global memory
    TYPE sample = tex2DLayered(tex, u, v, layer);
    g_odata[layer*width*height + y*width + x] = sample;

    printf("Sample %d\n", sample);
}


////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int
main(int argc, char **argv)
{
    printf("[%s] - Starting...\n", sSDKname);

    // use command-line specified CUDA device, otherwise use device with highest Gflops/s
    int devID = findCudaDevice(argc, (const char **)argv);

    bool bResult = true;

    // get number of SMs on this GPU
    cudaDeviceProp deviceProps;

    checkCudaErrors(cudaGetDeviceProperties(&deviceProps, devID));
    printf("CUDA device [%s] has %d Multi-Processors ", deviceProps.name, deviceProps.multiProcessorCount);
    printf("SM %d.%d\n", deviceProps.major, deviceProps.minor);

    if (deviceProps.major < 2)
    {
        printf("%s requires SM >= 2.0 to support Texture Arrays.  Test will be waived... \n", sSDKname);
        cudaDeviceReset();
        exit(EXIT_SUCCESS);
    }

    // generate input data for layered texture
    unsigned int width=16, height=16, num_layers = 5;
    unsigned int size = width * height * num_layers * sizeof(TYPE);
    TYPE *h_data = (TYPE *) malloc(size);

    for (unsigned int layer = 0; layer < num_layers; layer++)
        for (int i = 0; i < (int)(width * height); i++)
        {
            h_data[layer*width*height + i] = 15;//(float)i;
        }

    // this is the expected transformation of the input data (the expected output)
    TYPE *h_data_ref = (TYPE *) malloc(size);

    for (unsigned int layer = 0; layer < num_layers; layer++)
        for (int i = 0; i < (int)(width * height); i++)
        {
            h_data_ref[layer*width*height + i] = h_data[layer*width*height + i];
        }

    // allocate device memory for result
    TYPE *d_data = NULL;
    checkCudaErrors(cudaMalloc((void **) &d_data, size));

    // allocate array and copy image data
    cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<TYPE>();
    cudaArray *cu_3darray;
    checkCudaErrors(cudaMalloc3DArray(&cu_3darray, &channelDesc, make_cudaExtent(width, height, num_layers), cudaArrayLayered));
    cudaMemcpy3DParms myparms = {0};
    myparms.srcPos = make_cudaPos(0,0,0);
    myparms.dstPos = make_cudaPos(0,0,0);
    myparms.srcPtr = make_cudaPitchedPtr(h_data, width * sizeof(TYPE), width, height);
    myparms.dstArray = cu_3darray;
    myparms.extent = make_cudaExtent(width, height, num_layers);
    myparms.kind = cudaMemcpyHostToDevice;
    checkCudaErrors(cudaMemcpy3D(&myparms));

    // set texture parameters
    tex.addressMode[0] = cudaAddressModeWrap;
    tex.addressMode[1] = cudaAddressModeWrap;
//    tex.filterMode = cudaFilterModeLinear;
    tex.filterMode = cudaFilterModePoint;
    tex.normalized = true;  // access with normalized texture coordinates

    // Bind the array to the texture
    checkCudaErrors(cudaBindTextureToArray(tex, cu_3darray, channelDesc));

    dim3 dimBlock(8, 8, 1);
    dim3 dimGrid(width / dimBlock.x, height / dimBlock.y, 1);

    printf("Covering 2D data array of %d x %d: Grid size is %d x %d, each block has 8 x 8 threads\n",
           width, height, dimGrid.x, dimGrid.y);

    transformKernel<<< dimGrid, dimBlock >>>(d_data, width, height, 0);  // warmup (for better timing)

    // check if kernel execution generated an error
    getLastCudaError("warmup Kernel execution failed");

    checkCudaErrors(cudaDeviceSynchronize());

    StopWatchInterface *timer = NULL;
    sdkCreateTimer(&timer);
    sdkStartTimer(&timer);

    // execute the kernel
    for (unsigned int layer = 0; layer < num_layers; layer++)
        transformKernel<<< dimGrid, dimBlock, 0 >>>(d_data, width, height, layer);

    // check if kernel execution generated an error
    getLastCudaError("Kernel execution failed");

    checkCudaErrors(cudaDeviceSynchronize());
    sdkStopTimer(&timer);
    printf("Processing time: %.3f msec\n", sdkGetTimerValue(&timer));
    printf("%.2f Mtexlookups/sec\n", (width *height *num_layers / (sdkGetTimerValue(&timer) / 1000.0f) / 1e6));
    sdkDeleteTimer(&timer);

    // allocate mem for the result on host side
    TYPE *h_odata = (TYPE *) malloc(size);
    // copy result from device to host
    checkCudaErrors(cudaMemcpy(h_odata, d_data, size, cudaMemcpyDeviceToHost));

    printf("Comparing kernel output to expected data\n");

#define MIN_EPSILON_ERROR 5e-3f
    bResult = compareData(h_odata, h_data_ref, width*height*num_layers, MIN_EPSILON_ERROR, 0.0f);

    printf("Host sample: %d == %d\n", h_data_ref[0], h_odata[0]);

    // cleanup memory
    free(h_data);
    free(h_data_ref);
    free(h_odata);

    checkCudaErrors(cudaFree(d_data));
    checkCudaErrors(cudaFreeArray(cu_3darray));

    cudaDeviceReset();

    if (bResult)
        printf("Success!");
    else
        printf("Failure!");

    exit(bResult ? EXIT_SUCCESS : EXIT_FAILURE);
}

The output is correct if I use int (or uint) as TYPE. For float it produces wrong results i.e. always 0 (eventhough the SDK compareData function says everything is fine!?). I'm starting to believe that there is a bug in CUDA. I'm using version 5.0 on a Kepler K20.

Any suggestions and test results are appreciated. The code should be runnable as is.

Thanks in advance, Ben

Edit: OS is Linux (Ubuntu 12.04.2 LTS) x86_64 3.2.0-38-generic

Upvotes: 3

Views: 2087

Answers (1)

Robert Crovella
Robert Crovella

Reputation: 151934

The problem here is that if you only change this:

typedef int TYPE;

to this:

typedef float TYPE;

then this line in the kernel is no longer correct:

printf("Sample %d\n", sample);
               ^^

because the printf format specifier %d is not correct for float type. If you change that specifier to %f, you get expected output:

$ cat t1519.cu
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>

// includes, kernels
#include <cuda_runtime.h>

// includes, project
#include <helper_cuda.h>
#include <helper_functions.h>  // helper for shared that are common to CUDA SDK samples

#define EXIT_WAIVED 2

static char *sSDKname = "simpleLayeredTexture";

// includes, kernels
// declare texture reference for layered 2D float texture
// Note: The "dim" field in the texture reference template is now deprecated.
// Instead, please use a texture type macro such as cudaTextureType1D, etc.

typedef float TYPE;

texture<TYPE, cudaTextureType2DLayered> tex;

////////////////////////////////////////////////////////////////////////////////
//! Transform a layer of a layered 2D texture using texture lookups
//! @param g_odata  output data in global memory
////////////////////////////////////////////////////////////////////////////////
__global__ void
transformKernel(TYPE *g_odata, int width, int height, int layer)
{
    // calculate this thread's data point
    unsigned int x = blockIdx.x*blockDim.x + threadIdx.x;
    unsigned int y = blockIdx.y*blockDim.y + threadIdx.y;

    // 0.5f offset and division are necessary to access the original data points
    // in the texture (such that bilinear interpolation will not be activated).
    // For details, see also CUDA Programming Guide, Appendix D
    float u = (x+0.5f) / (float) width;
    float v = (y+0.5f) / (float) height;

    // read from texture, do expected transformation and write to global memory
    TYPE sample = tex2DLayered(tex, u, v, layer);
    g_odata[layer*width*height + y*width + x] = sample;

    printf("Sample %f\n", sample);
}


////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int
main(int argc, char **argv)
{
    printf("[%s] - Starting...\n", sSDKname);

    // use command-line specified CUDA device, otherwise use device with highest Gflops/s
    int devID = findCudaDevice(argc, (const char **)argv);

    bool bResult = true;

    // get number of SMs on this GPU
    cudaDeviceProp deviceProps;

    checkCudaErrors(cudaGetDeviceProperties(&deviceProps, devID));
    printf("CUDA device [%s] has %d Multi-Processors ", deviceProps.name, deviceProps.multiProcessorCount);
    printf("SM %d.%d\n", deviceProps.major, deviceProps.minor);

    if (deviceProps.major < 2)
    {
        printf("%s requires SM >= 2.0 to support Texture Arrays.  Test will be waived... \n", sSDKname);
        cudaDeviceReset();
        exit(EXIT_SUCCESS);
    }

    // generate input data for layered texture
    unsigned int width=16, height=16, num_layers = 5;
    unsigned int size = width * height * num_layers * sizeof(TYPE);
    TYPE *h_data = (TYPE *) malloc(size);

    for (unsigned int layer = 0; layer < num_layers; layer++)
        for (int i = 0; i < (int)(width * height); i++)
        {
            h_data[layer*width*height + i] = 15;//(float)i;
        }

    // this is the expected transformation of the input data (the expected output)
    TYPE *h_data_ref = (TYPE *) malloc(size);

    for (unsigned int layer = 0; layer < num_layers; layer++)
        for (int i = 0; i < (int)(width * height); i++)
        {
            h_data_ref[layer*width*height + i] = h_data[layer*width*height + i];
        }

    // allocate device memory for result
    TYPE *d_data = NULL;
    checkCudaErrors(cudaMalloc((void **) &d_data, size));

    // allocate array and copy image data
    cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<TYPE>();
    cudaArray *cu_3darray;
    checkCudaErrors(cudaMalloc3DArray(&cu_3darray, &channelDesc, make_cudaExtent(width, height, num_layers), cudaArrayLayered));
    cudaMemcpy3DParms myparms = {0};
    myparms.srcPos = make_cudaPos(0,0,0);
    myparms.dstPos = make_cudaPos(0,0,0);
    myparms.srcPtr = make_cudaPitchedPtr(h_data, width * sizeof(TYPE), width, height);
    myparms.dstArray = cu_3darray;
    myparms.extent = make_cudaExtent(width, height, num_layers);
    myparms.kind = cudaMemcpyHostToDevice;
    checkCudaErrors(cudaMemcpy3D(&myparms));

    // set texture parameters
    tex.addressMode[0] = cudaAddressModeWrap;
    tex.addressMode[1] = cudaAddressModeWrap;
//    tex.filterMode = cudaFilterModeLinear;
    tex.filterMode = cudaFilterModePoint;
    tex.normalized = true;  // access with normalized texture coordinates

    // Bind the array to the texture
    checkCudaErrors(cudaBindTextureToArray(tex, cu_3darray, channelDesc));

    dim3 dimBlock(8, 8, 1);
    dim3 dimGrid(width / dimBlock.x, height / dimBlock.y, 1);

    printf("Covering 2D data array of %d x %d: Grid size is %d x %d, each block has 8 x 8 threads\n",
           width, height, dimGrid.x, dimGrid.y);

    transformKernel<<< dimGrid, dimBlock >>>(d_data, width, height, 0);  // warmup (for better timing)

    // check if kernel execution generated an error
    getLastCudaError("warmup Kernel execution failed");

    checkCudaErrors(cudaDeviceSynchronize());

    StopWatchInterface *timer = NULL;
    sdkCreateTimer(&timer);
    sdkStartTimer(&timer);

    // execute the kernel
    for (unsigned int layer = 0; layer < num_layers; layer++)
        transformKernel<<< dimGrid, dimBlock, 0 >>>(d_data, width, height, layer);

    // check if kernel execution generated an error
    getLastCudaError("Kernel execution failed");

    checkCudaErrors(cudaDeviceSynchronize());
    sdkStopTimer(&timer);
    printf("Processing time: %.3f msec\n", sdkGetTimerValue(&timer));
    printf("%.2f Mtexlookups/sec\n", (width *height *num_layers / (sdkGetTimerValue(&timer) / 1000.0f) / 1e6));
    sdkDeleteTimer(&timer);

    // allocate mem for the result on host side
    TYPE *h_odata = (TYPE *) malloc(size);
    // copy result from device to host
    checkCudaErrors(cudaMemcpy(h_odata, d_data, size, cudaMemcpyDeviceToHost));

    printf("Comparing kernel output to expected data\n");

#define MIN_EPSILON_ERROR 5e-3f
    bResult = compareData(h_odata, h_data_ref, width*height*num_layers, MIN_EPSILON_ERROR, 0.0f);

    printf("Host sample: %d == %d\n", h_data_ref[0], h_odata[0]);

    // cleanup memory
    free(h_data);
    free(h_data_ref);
    free(h_odata);

    checkCudaErrors(cudaFree(d_data));
    checkCudaErrors(cudaFreeArray(cu_3darray));

    cudaDeviceReset();

    if (bResult)
        printf("Success!");
    else
        printf("Failure!");

    exit(bResult ? EXIT_SUCCESS : EXIT_FAILURE);
}
$ nvcc -I/usr/local/cuda/samples/common/inc t1519.cu -o t1519
t1519.cu(15): warning: conversion from a string literal to "char *" is deprecated

t1519.cu(15): warning: conversion from a string literal to "char *" is deprecated

[user2@dc10 misc]$ cuda-memcheck ./t1519
========= CUDA-MEMCHECK
[simpleLayeredTexture] - Starting...
GPU Device 0: "Tesla V100-PCIE-32GB" with compute capability 7.0

CUDA device [Tesla V100-PCIE-32GB] has 80 Multi-Processors SM 7.0
Covering 2D data array of 16 x 16: Grid size is 2 x 2, each block has 8 x 8 threads
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
...
Sample 15.000000
Sample 15.000000
Sample 15.000000
Processing time: 13.991 msec
0.09 Mtexlookups/sec
Comparing kernel output to expected data
Host sample: 8964432 == 1
Success!========= ERROR SUMMARY: 0 errors
$

note that the final output line is still incorrect, because I have not modified the incorrect printf format specifiers there:

printf("Host sample: %d == %d\n", h_data_ref[0], h_odata[0]);

Upvotes: 1

Related Questions