Reputation: 13969
Is there any way to use the mapping function or something better to replace values in an entire dataframe?
I only know how to perform the mapping on series.
I would like to replace the strings in the 'tesst' and 'set' column with a number for example set = 1, test =2
Here is a example of my dataset: (Original dataset is very large)
ds_r
respondent brand engine country aware aware_2 aware_3 age tesst set
0 a volvo p swe 1 0 1 23 set set
1 b volvo None swe 0 0 1 45 set set
2 c bmw p us 0 0 1 56 test test
3 d bmw p us 0 1 1 43 test test
4 e bmw d germany 1 0 1 34 set set
5 f audi d germany 1 0 1 59 set set
6 g volvo d swe 1 0 0 65 test set
7 h audi d swe 1 0 0 78 test set
8 i volvo d us 1 1 1 32 set set
Final result should be
ds_r
respondent brand engine country aware aware_2 aware_3 age tesst set
0 a volvo p swe 1 0 1 23 1 1
1 b volvo None swe 0 0 1 45 1 1
2 c bmw p us 0 0 1 56 2 2
3 d bmw p us 0 1 1 43 2 2
4 e bmw d germany 1 0 1 34 1 1
5 f audi d germany 1 0 1 59 1 1
6 g volvo d swe 1 0 0 65 2 1
7 h audi d swe 1 0 0 78 2 1
8 i volvo d us 1 1 1 32 1 1
Upvotes: 60
Views: 166935
Reputation: 15366
pandas.factorize()
does exactly this.
>>> codes, uniques = pd.factorize(['b', 'b', 'a', 'c', 'b'])
>>> codes
array([0, 0, 1, 2, 0]...)
>>> uniques
array(['b', 'a', 'c'], dtype=object)
With a DataFrame:
df["tesst"], tesst_key = pandas.factorize(df["tesst"])
Upvotes: 4
Reputation: 1892
You can build dictionary
from column
values itself and fill like below
x=df['Item_Type'].value_counts()
item_type_mapping={}
item_list=x.index
for i in range(0,len(item_list)):
item_type_mapping[item_list[i]]=i
df['Item_Type']=df['Item_Type'].map(lambda x:item_type_mapping[x])
Upvotes: 1
Reputation: 1175
The simplest way to replace any value in the dataframe:
df=df.replace(to_replace="set",value="1")
df=df.replace(to_replace="test",value="2")
Hope this will help.
Upvotes: 12
Reputation: 1001
To convert Strings like 'volvo','bmw' into integers first convert it to a dataframe then pass it to pandas.get_dummies()
df = DataFrame.from_csv("myFile.csv")
df_transform = pd.get_dummies( df )
print( df_transform )
Better alternative: passing a dictionary to map() of a pandas series (df.myCol) (by specifying the column brand for example)
df.brand = df.brand.map( {'volvo':0 , 'bmw':1, 'audi':2} )
Upvotes: 8
Reputation: 2543
df.replace(to_replace=['set', 'test'], value=[1, 2])
from @Ishnark comment on accepted answer.
Upvotes: 0
Reputation: 3366
When no of features are not much :
mymap = {'a':1, 'b':2, 'c':3, 'd':4, 'e':5}
df.applymap(lambda s: mymap.get(s) if s in mymap else s)
When it's not possible manually :
temp_df2 = pd.DataFrame({'data': data.data.unique(), 'data_new':range(len(data.data.unique()))})# create a temporary dataframe
data = data.merge(temp_df2, on='data', how='left')# Now merge it by assigning different values to different strings.
Upvotes: 2
Reputation: 4717
You can also do this with pandas rename_categories
. You would first need to define the column as dtype="category"
e.g.
In [66]: s = pd.Series(["a","b","c","a"], dtype="category")
In [67]: s
Out[67]:
0 a
1 b
2 c
3 a
dtype: category
Categories (3, object): [a, b, c]
and then rename them:
In [70]: s.cat.rename_categories([1,2,3])
Out[70]:
0 1
1 2
2 3
3 1
dtype: category
Categories (3, int64): [1, 2, 3]
You can also pass a dict-like object to map the renaming, e.g.:
In [72]: s.cat.rename_categories({1: 'x', 2: 'y', 3: 'z'})
Upvotes: 2
Reputation: 421
I know this is old, but adding for those searching as I was. Create a dataframe in pandas, df in this code
ip_addresses = df.source_ip.unique()
ip_dict = dict(zip(ip_addresses, range(len(ip_addresses))))
That will give you a dictionary map of the ip addresses without having to write it out.
Upvotes: 32
Reputation: 35235
What about DataFrame.replace
?
In [9]: mapping = {'set': 1, 'test': 2}
In [10]: df.replace({'set': mapping, 'tesst': mapping})
Out[10]:
Unnamed: 0 respondent brand engine country aware aware_2 aware_3 age \
0 0 a volvo p swe 1 0 1 23
1 1 b volvo None swe 0 0 1 45
2 2 c bmw p us 0 0 1 56
3 3 d bmw p us 0 1 1 43
4 4 e bmw d germany 1 0 1 34
5 5 f audi d germany 1 0 1 59
6 6 g volvo d swe 1 0 0 65
7 7 h audi d swe 1 0 0 78
8 8 i volvo d us 1 1 1 32
tesst set
0 2 1
1 1 2
2 2 1
3 1 2
4 2 1
5 1 2
6 2 1
7 1 2
8 2 1
As @Jeff pointed out in the comments, in pandas versions < 0.11.1, manually tack .convert_objects()
onto the end to properly convert tesst and set to int64
columns, in case that matters in subsequent operations.
Upvotes: 91
Reputation: 17550
You can use the applymap
DataFrame function to do this:
In [26]: df = DataFrame({"A": [1,2,3,4,5], "B": ['a','b','c','d','e'],
"C": ['b','a','c','c','d'], "D": ['a','c',7,9,2]})
In [27]: df
Out[27]:
A B C D
0 1 a b a
1 2 b a c
2 3 c c 7
3 4 d c 9
4 5 e d 2
In [28]: mymap = {'a':1, 'b':2, 'c':3, 'd':4, 'e':5}
In [29]: df.applymap(lambda s: mymap.get(s) if s in mymap else s)
Out[29]:
A B C D
0 1 1 2 1
1 2 2 1 3
2 3 3 3 7
3 4 4 3 9
4 5 5 4 2
Upvotes: 19