Reputation: 23
I have a data frame like
df<-data.frame(date=c(rep("1/27/2010",times=30)),
loc1=c(rep(9:13,each=6)),
loc2=c(rep(c("N","E","W"),each=2)),
loc3=c(rep(c(1,2))),
tr1=c(rep(c(0,1),each=15)),
tr2=c(0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1),
tr3=c(1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4),
Birth=c(sample(c("early","late"),30,replace=TRUE,prob=c(0.5,0.5))),
Species=c(rep(c("A","B"),times=15)),
Status=c(sample(c(0,1),30,replace=TRUE,prob=c(0.7,0.3))))
df<-rbind(df,df)
I want to make separate columns for each value of loc3, with rows defined by loc1,loc2,tr1,tr2,tr3,Birth, and Species. I want to 'count' the statuses of all the observations that share these values and group the counts by loc3.
I planned to use dcast from the reshape2 package.
I wrote a function to perform the 'count' I want. I'm new to R and while I'm sure there is a function that does this, I couldn't find it immediately and it seemed a worthwhile exercise to try and write the script myself, given the simplicity of the task.
d.count<-function(x){
j=0
for (i in 1:length(x))
if (is.na(x{i])){
j<-j+0
}else if(x[i]==0){
j<-j+1
} else if(x[i]==1){
j<-j+0
}
return(j)
}
0s should increase the count and 1s and NAs shouldn't.
So
df_1<-dcast(df,date+loc1+loc2+tr1+tr2+tr3+Birth+Species~loc3,value.var="Status",fun.aggregate=d.count)
I get the error
Error in if (is.na(x[i])) { : argument is of length zero
Which makes me think I do not understand how dcast is treating fun.aggregate...
Thanks for the help! -JJE
Upvotes: 2
Views: 1643
Reputation: 18437
Why not something like this using the tabulate
function
require(reshape2)
dcast(df, ... ~ loc3, value.var = "Status", fun.aggregate = tabulate)
## date loc1 loc2 tr1 tr2 tr3 Birth Species 1 2
## 1 1/27/2010 9 E 0 0 1 early A 0 0
## 2 1/27/2010 9 E 0 0 1 early B 0 0
## 3 1/27/2010 9 N 0 0 1 early B 0 0
## 4 1/27/2010 9 N 0 0 1 late A 0 0
## 5 1/27/2010 9 W 0 0 1 early B 0 0
## 6 1/27/2010 9 W 0 0 1 late A 0 0
## 7 1/27/2010 10 E 0 1 2 late A 0 0
## 8 1/27/2010 10 E 0 1 2 late B 0 2
## 9 1/27/2010 10 N 0 0 1 late A 0 0
## 10 1/27/2010 10 N 0 1 2 late B 0 2
## 11 1/27/2010 10 W 0 1 2 late A 0 0
## 12 1/27/2010 10 W 0 1 2 late B 0 0
## 13 1/27/2010 11 E 0 1 2 late A 0 0
## 14 1/27/2010 11 E 1 0 3 early B 0 2
## 15 1/27/2010 11 N 0 1 2 early B 0 0
## 16 1/27/2010 11 N 0 1 2 late A 0 0
## 17 1/27/2010 11 W 1 0 3 late A 0 0
## 18 1/27/2010 11 W 1 0 3 late B 0 2
## 19 1/27/2010 12 E 1 0 3 early B 0 0
## 20 1/27/2010 12 E 1 0 3 late A 0 0
## 21 1/27/2010 12 N 1 0 3 early A 2 0
## 22 1/27/2010 12 N 1 0 3 early B 0 2
## 23 1/27/2010 12 W 1 0 4 early A 0 0
## 24 1/27/2010 12 W 1 1 4 early B 0 0
## 25 1/27/2010 13 E 1 1 4 early B 0 0
## 26 1/27/2010 13 E 1 1 4 late A 0 0
## 27 1/27/2010 13 N 1 1 4 late A 0 0
## 28 1/27/2010 13 N 1 1 4 late B 0 2
## 29 1/27/2010 13 W 1 1 4 early A 0 0
## 30 1/27/2010 13 W 1 1 4 early B 0 2
EDIT
If you want to count the number of 0 for example :
dcast(df, ... ~ loc3, value.var = "Status",
fun.aggregate = function(x) sum(x == 0, na.rm = TRUE))
Upvotes: 2