Reputation: 343
I have a question regarding rearrangement of the columns in a pivot_table. I want to group columns by month, but with the arrangement as follows:
JAN FEB
X,Y,X/Y X,Y,X/Y ....
The current output is:
JAN FEB JAN FEB JAN ...
X X ... Y Y ... X/Y ...
I've noticied the same behavior implemented in Excel when building a pivot table with multiple columns.
See an example below. The output has the first format. Thanks
from pandas import DataFrame,pivot_table
import numpy as np
from datetime import datetime
names=["a","b","c","a","b"]
dates=["20/01/2013","21/01/2013","22/02/2013", "01/03/2013","01/03/2013"]
dico={"x":[1,3,5,7,9], "y":[2,4,6,8,10], "date":dates, "name":names}
df=DataFrame(dico)
df["month"]=[datetime.strptime(x,'%d/%m/%Y').month for x in dates ]
print df
mpivot=pivot_table(df, values=["x","y"],cols=["month"], rows="name",aggfunc=np.sum)
print mpivot
Upvotes: 2
Views: 4213
Reputation: 375515
You could do this once this pivot table has been created:
In [11]: p = pivot_table(df, values=["x","y"], cols=["month"],
rows="name", aggfunc=np.sum)
In [12]: p
Out[12]:
x y
month 1 2 3 1 2 3
name
a 1 NaN 7 2 NaN 8
b 3 NaN 9 4 NaN 10
c NaN 5 NaN NaN 6 NaN
First by switching the column levels, then sorting by columns:
In [13]: p.reorder_levels([1, 0], axis=1).sort_index(axis=1)
Out[13]:
month 1 2 3
x y x y x y
name
a 1 2 NaN NaN 7 8
b 3 4 NaN NaN 9 10
c NaN NaN 5 6 NaN NaN
Upvotes: 4