Tony
Tony

Reputation: 359

Can Panel4d and PanelND objects be saved?

I realise now that the experimental PanelND objects are going to fit my need brilliantly, except it appears I can't save them:

p4d = pd.Panel4D(np.random.randn(2, 2, 5, 4),
    labels=['Label1','Label2'],
    items=['Item1', 'Item2'],
    major_axis=pd.date_range('1/1/2000', periods=5),
    minor_axis=['A', 'B', 'C', 'D'])
p4d.save('p4d')
...
PicklingError: Can't pickle <class 'pandas.core.panelnd.Panel4D'>: attribute lookup pandas.core.panelnd.Panel4D failed

And if I try to write it to a HDFStore, I get:

TypeError: cannot properly create the storer for: [_STORER_MAP] [group->/p4d (Group) u'',value-><class 'pandas.core.panelnd.Panel4D'>,table->None,append->False,kwargs->{}]

Other than saving the individual DataFrames and stitching them together, how can I persist the higher dimensional obects?

Edit: I see that store.append() works for Panel4D but save() doesn't, and nor does store.append() for the example Panel5D. I really am after higher than 4D, so the problem still persists.

Edit: more info:

I am trying to create an arbitrary dimensioned panel, within nested loops across the dimensions, and then to be able to slice that data, again arbitrarily, so I can process it (collate, plot, optimise)

In (rough) code:

for a in range(1,10):
    panel4ddict = {}
    for b in range(101, 150):
    paneldict = {}
        for c in range(500, 501):
            df = MakeDataFrame(a, b, c) # returns processed df
            paneldict[c] = df
        p3d = Panel(paneldict)
        panel4ddict[b] = p3d
    p4d = Panel4D(panel4ddict)
    panel5ddict[a] = p4d
panel5d = Panel5D(panel5ddict)

sliced = panel5d[:,3,5:6]
# and then do some plotting of my sliced DF

Upvotes: 4

Views: 519

Answers (1)

Jeff
Jeff

Reputation: 129018

Here is a way to store a Panel5D. Essentially you store each of the Panel4D as a separate group in the store, then reconstruct on read-back.

Note you might be better off storing this as DataFrame with multi-levels (3 or more) which in-effect contains the same information as a Panel5D, but unrolled long-wise.

 In [1]: from pandas.core import panelnd, panel4d
        from pandas.utils import testing as tm 

In [2]: Panel5D = panelnd.create_nd_panel_factory(
   ...:     klass_name='Panel5D',
   ...:     axis_orders=['cool', 'labels', 'items', 'major_axis',
   ...:                  'minor_axis'],
   ...:     axis_slices={'labels': 'labels', 'items': 'items',
   ...:                  'major_axis': 'major_axis',
   ...:                  'minor_axis': 'minor_axis'},
   ...:     slicer=panel4d.Panel4D,
   ...:     axis_aliases={'major': 'major_axis', 'minor': 'minor_axis'},
   ...:     stat_axis=2)

In [4]: p4d = panel4d.Panel4D(dict(L1=tm.makePanel(), L2=tm.makePanel()))

In [5]: p5d = Panel5D(dict(C1 = p4d, C2 = p4d+1))

In [6]: p5d
Out[6]: 
<class 'pandas.core.panelnd.Panel5D'>
Dimensions: 2 (cool) x 2 (labels) x 3 (items) x 30 (major_axis) x 4 (minor_axis)
Cool axis: C1 to C2
Labels axis: L1 to L2
Items axis: ItemA to ItemC
Major_axis axis: 2000-01-03 00:00:00 to 2000-02-11 00:00:00
Minor_axis axis: A to D

In [7]: store = pd.HDFStore('test.h5',mode='w')

In [9]: for x in p5d.cool:
    store.append(x,p5d[x])
   ...:     

In [10]: store
Out[10]: 
<class 'pandas.io.pytables.HDFStore'>
File path: test.h5
/C1            wide_table   (typ->appendable,nrows->360,ncols->2,indexers->[items,major_axis,minor_axis])
/C2            wide_table   (typ->appendable,nrows->360,ncols->2,indexers->[items,major_axis,minor_axis])

In [11]: store.close()

Upvotes: 1

Related Questions