Reputation: 1096
I have a program written in C++ intended to run on a Linux OS. Ignoring much of the program, it boils down to this - it starts X number of executables after some amount of time (for simplicity sake, let's use 5 seconds).
Currently, I'm using system(path/to/executable/executable_name)
to do the actual starting of the executable(s) and that works just fine for getting the executable(s) to start.
I'm also trying to maintain a status for each executable (for simplicity sake again, let's just say the status is either "UP" or "DOWN" (running or not running)). I have been able to accomplish this...somewhat...
Backing up just a tad, when my program is told to start the executable(s), the logic looks something like this:
pid = fork()
if (pid < 0) exit 0; //fork failed
if (pid == 0) {
system(path/to/executable/executable_name)
set executable's status to DOWN
} else {
verify executable started
set executable's status to UP
}
Herein lies my problem. fork()
causes a child process to be spawned, which is what I thought I needed in order for the original process to continue starting additional executables. I don't want to wait for an executable to stop in order to start another.
However, the executable starts in another child process...which is separate from the parent process... and if I try to set the executable's status to DOWN in the child process when system returns, the parent process does not know about it...
I have a few ideas of what I might need to do:
Any suggestions?
EDIT 1 I thought I'd better give a little more context for the logic:
void startAll() {
for each 'executable'
call startExecutable(executable_name)
}
...
void startExecutable (executable_name) {
pid = fork()
if (pid < 0) exit 0; //fork failed
if (pid == 0) {
system(path/to/executable/executable_name)
set executable's status to DOWN
exit (1); <-- this is because once the child process's system returns, I don't want it to return to the above loop and start starting executables
} else {
verify executable started
set executable's status to UP
}
}
EDIT 2 As mentioned at the beginning, this is assuming a simplified setup (a first run if you will). The plan is to handle not just an "UP" or "DOWN" state, but also a third state to handle sending a message to the executables my program has started - "STANDBY." I initially left this piece out to avoid complicating the explanation but I now see that it is imperitive to include.
Upvotes: 2
Views: 4259
Reputation: 15397
You need to understand what exactly is happening when you fork
. What you're doing is creating a subprocess that's an exact clone of the forking process. All variables currently in memory are copied exactly, and the subprocess has access to all of those copies of all of those variables.
But they're copies, so as you've noticed, fork and exec/system does not on its own handle inter-process communication (IPC). Setting a memory value in one of the processes doesn't alter that variable in any other process, including its parent, because the memory spaces are different.
Also, system
is very similar to exec
, but gives you much less control over the file descriptors and execution environment. You're effectively already doing a fork and exec, which is what you should be doing.
When you fork properly (as you do in your example), you now have two processes, and neither one is waiting for the other - they just run in completely different codepaths. What you basically want is to have the parent do nothing but sit around waiting for new programs to open, and occassionally check the status of the kids, while the kids run and play as long as they want.
There are IPC solutions such as pipes and message FIFO queues, but that's excessive in your case. In your case, you're just looking for process management. The parent is given the pid of the children. Save it and use it. You can call waitpid
to wait for the child to end, but you don't want that. You just want the parent to check the status of the child. One way to do that is check if kill(childPid,0) == 0
. If not, then the pid has exited, i.e. it's no longer running. You can also check /proc/childPid
for all sorts of information.
If your status is less simple than your question implied, you'll want to look into piping after forking and execing. Otherwise, all you need is process monitoring.
Based on your EDIT 2, you're still within the domain of process management, instead of IPC. The kill
command sends a signal to a process (if the command is non-0). What you're looking for is to have the parent kill(childPid, SIGTSTP)
. On the child side, you just need to make a signal handler, using the signal
command. Among many other references, see http://www.yolinux.com/TUTORIALS/C++Signals.html. Basically, you want:
void sigTempStopHandler(int signum) { /* ... */ }
signal(SIGTSTP, sigTempStopHandler);
to be executed in the child code. The parent, of course, would know when this state is sent, so can change the status. You can use other signals for resuming when necessary.
Piping is the most robust IPC you could use - it lets you send any amount of data from one process to another, and can be in whichever direction you want. If you want your parent to send "You've been a very bad boy" to the child, it can, and the child can send "But I'll choose your nursing home one day" to the parent. (Less flippantly, you can pass any data, whether text or binary from one process to another - including objects that you serialize, or just the raw data for objects if it doesn't depend on memory, e.g. an int.)
So far, what you've described is sending simple command structures from the parent to the child, and kill
is perfect for that. The child could send signals almost as easily - except that it would need to know the parent's pid to do that. (Not hard to do - before forking, save the pid: int pid = getPid();
, now the child knows the parent.) Signals have no data, they're just very raw events, but so far, that sounds like all you're looking for.
Upvotes: 7