Reputation: 8392
I have a class that represents sales orders:
class SalesOrder(val f01:String, val f02:Int, ..., f50:Date)
The fXX
fields are of various types. I am faced with the problem of creating an audit trail of my orders. Given two instances of the class, I have to determine which fields have changed. I have come up with the following:
class SalesOrder(val f01:String, val f02:Int, ..., val f50:Date){
def auditDifferences(that:SalesOrder): List[String] = {
def diff[A](fieldName:String, getField: SalesOrder => A) =
if(getField(this) != getField(that)) Some(fieldName) else None
val diffList = diff("f01", _.f01) :: diff("f02", _.f02) :: ...
:: diff("f50", _.f50) :: Nil
diffList.flatten
}
}
I was wondering what the compiler does with all the _.fXX
functions: are they instanced just once (statically), and can be shared by all instances of my class, or will they be instanced every time I create an instance of my class?
My worry is that, since I will use a lot of SalesOrder instances, it may create a lot of garbage. Should I use a different approach?
Upvotes: 4
Views: 150
Reputation: 139028
One clean way of solving this problem would be to use the standard library's Ordering
type class. For example:
class SalesOrder(val f01: String, val f02: Int, val f03: Char) {
def diff(that: SalesOrder) = SalesOrder.fieldOrderings.collect {
case (name, ord) if !ord.equiv(this, that) => name
}
}
object SalesOrder {
val fieldOrderings: List[(String, Ordering[SalesOrder])] = List(
"f01" -> Ordering.by(_.f01),
"f02" -> Ordering.by(_.f02),
"f03" -> Ordering.by(_.f03)
)
}
And then:
scala> val orderA = new SalesOrder("a", 1, 'a')
orderA: SalesOrder = SalesOrder@5827384f
scala> val orderB = new SalesOrder("b", 1, 'b')
orderB: SalesOrder = SalesOrder@3bf2e1c7
scala> orderA diff orderB
res0: List[String] = List(f01, f03)
You almost certainly don't need to worry about the perfomance of your original formulation, but this version is (arguably) nicer for unrelated reasons.
Upvotes: 2
Reputation: 67280
Yes, that creates 50 short lived functions. I don't think you should be worried unless you have manifest evidence that that causes a performance problem in your case.
But I would define a method that transforms SalesOrder
into a Map[String, Any]
, then you would just have
trait SalesOrder {
def fields: Map[String, Any]
}
def diff(a: SalesOrder, b: SalesOrder): Iterable[String] = {
val af = a.fields
val bf = b.fields
af.collect { case (key, value) if bf(key) != value => key }
}
If the field names are indeed just incremental numbers, you could simplify
trait SalesOrder {
def fields: Iterable[Any]
}
def diff(a: SalesOrder, b: SalesOrder): Iterable[String] =
(a.fields zip b.fields).zipWithIndex.collect {
case ((av, bv), idx) if av != bv => f"f${idx + 1}%02d"
}
Upvotes: 1