Reputation:
What is the most elegant and concise way (without creating my own class with operator overloading) to perform tuple arithmetic in Python 2.7?
Lets say I have two tuples:
a = (10, 10)
b = (4, 4)
My intended result is
c = a - b = (6, 6)
I currently use:
c = (a[0] - b[0], a[1] - b[1])
I also tried:
c = tuple([(i - j) for i in a for j in b])
but the result was (6, 6, 6, 6)
. I believe the above works as a nested for loops resulting in 4 iterations and 4 values in the result.
Upvotes: 81
Views: 92766
Reputation:
As an addition to Kohei Kawasaki's answer, for speed, the original solution was actually the fastest (For a length two tuple at least).
>>> timeit.timeit('tuple(map(add, a, b))',number=1000000,setup='from operator import add; a=(10,11); b=(1,2)')
0.6502681339999867
>>> timeit.timeit('(a[0] - b[0], a[1] - b[1])',number=1000000,setup='from operator import add; a=(10,11); b=(1,2)')
0.19015854899998885
>>>
Upvotes: 3
Reputation: 879
Since in your question there only examples of 2-number-tuples, for such coordinate-like tuples, you may be good with simple built-in "complex" class:
>>> a=complex(7,5)
>>> b=complex(1,2)
>>> a-b
>>> c=a-b
>>> c
(6+3j)
>>> c.real
6.0
>>> c.imag
3.0
Upvotes: 2
Reputation: 141
JFYI, execution time in my laptop in 100000 times iteration
np.subtract(a, b)
: 0.18578505516052246
tuple(x - y for x, y in zip(a, b))
:
0.09348797798156738
tuple(map(lambda x, y: x - y, a, b))
: 0.07900381088256836
from operator import sub tuple(map(sub, a, b))
: 0.044342041015625
operator looks more elegant for me.
Upvotes: 14
Reputation: 374
my element-wise tuple arithmetic helper
supported operations: +, -, /, *, d
operation = 'd' calculates distance between two points on a 2D coordinate plane
def tuplengine(tuple1, tuple2, operation):
"""
quick and dirty, element-wise, tuple arithmetic helper,
created on Sun May 28 07:06:16 2017
...
tuple1, tuple2: [named]tuples, both same length
operation: '+', '-', '/', '*', 'd'
operation 'd' returns distance between two points on a 2D coordinate plane (absolute value of the subtraction of pairs)
"""
assert len(tuple1) == len(tuple2), "tuple sizes doesn't match, tuple1: {}, tuple2: {}".format(len(tuple1), len(tuple2))
assert isinstance(tuple1, tuple) or tuple in type(tuple1).__bases__, "tuple1: not a [named]tuple"
assert isinstance(tuple2, tuple) or tuple in type(tuple2).__bases__, "tuple2: not a [named]tuple"
assert operation in list("+-/*d"), "operation has to be one of ['+','-','/','*','d']"
return eval("tuple( a{}b for a, b in zip( tuple1, tuple2 ))".format(operation)) \
if not operation == "d" \
else eval("tuple( abs(a-b) for a, b in zip( tuple1, tuple2 ))")
Upvotes: 1
Reputation: 1735
This can also be done just as nicely without an import at all, although lambda is often undesirable:
tuple(map(lambda x, y: x - y, a, b))
If you are looking to get the distance between two points on say a 2d coordinate plane you should use the absolute value of the subtraction of the pairs.
tuple(map(lambda x ,y: abs(x - y), a, b))
Upvotes: 7
Reputation: 251166
Use zip
and a generator expression:
c = tuple(x-y for x, y in zip(a, b))
Demo:
>>> a = (10, 10)
>>> b = (4, 4)
>>> c = tuple(x-y for x, y in zip(a, b))
>>> c
(6, 6)
Use itertools.izip
for a memory efficient solution.
help on zip
:
>>> print zip.__doc__
zip(seq1 [, seq2 [...]]) -> [(seq1[0], seq2[0] ...), (...)]
Return a list of tuples, where each tuple contains the i-th element
from each of the argument sequences. The returned list is truncated
in length to the length of the shortest argument sequence.
Upvotes: 37
Reputation: 3106
If you're looking for fast, you can use numpy:
>>> import numpy
>>> numpy.subtract((10, 10), (4, 4))
array([6, 6])
and if you want to keep it in a tuple:
>>> tuple(numpy.subtract((10, 10), (4, 4)))
(6, 6)
Upvotes: 91
Reputation: 26437
One option would be,
>>> from operator import sub
>>> c = tuple(map(sub, a, b))
>>> c
(6, 6)
And itertools.imap
can serve as a replacement for map
.
Of course you can also use other functions from operator
to add
, mul
, div
, etc.
But I would seriously consider moving into another data structure since I don't think this type of problem is fit for tuple
s
Upvotes: 49