Reputation: 131128
Today I was positively surprised by the fact that while reading data from a data file (for example) pandas is able to recognize types of values:
df = pandas.read_csv('test.dat', delimiter=r"\s+", names=['col1','col2','col3'])
For example it can be checked in this way:
for i, r in df.iterrows():
print type(r['col1']), type(r['col2']), type(r['col3'])
In particular integer, floats and strings were recognized correctly. However, I have a column that has dates in the following format: 2013-6-4
. These dates were recognized as strings (not as python date-objects). Is there a way to "learn" pandas to recognized dates?
Upvotes: 248
Views: 418550
Reputation: 786
As part of a broad attempt to make datetime handling in Pandas 2.0 more reliable, date parsing (especially on CSV files) has seen a number of backwards-incompatible changes and deprecations. The infer_datetime_format
and date_parser
parameters reccomended by many other answers are now both deprecated (see PDEP-4 and this issue for the reasons why).
The proper way of parsing dates of known format now is now to use the parse_dates
and date_format
parameters of pd.read_csv()
.
df = pd.read_csv(
infile,
parse_dates=['My DateTime']
)
df = pd.read_csv(
infile,
parse_dates=['My DateTime'],
date_format={'My DateTime': '%Y-%m-%d %H:%M:%S'}
)
df = pd.read_csv(
infile,
parse_dates={'mydatetime': ['My Date', 'My Time']},
# mydatetime will contain my_date and my_time separated by a single space
date_format={'mydatetime': '%Y-%m-%d %H:%M:%S'}
)
If your date parsing logic is more complex than what can be done with static format strings, such as if you have multiple date formats on the same column, or were making advanced use of date_parser
, you are encouraged by the documentation for read_csv
(look at the parse_dates
parameter) to leave your column as the default object
type while reading the file and to do the date conversion in a second pass with pd.to_datetime
, as shown below.
In addition to what the other replies said, if you have to parse very large files with hundreds of thousands of timestamps, date_parser
can prove to be a huge performance bottleneck, as it's a Python function called once per row. You can get a sizeable performance improvements by instead keeping the dates as text while parsing the CSV file and then converting the entire column into dates in one go:
# For a data column
df = pd.read_csv(infile, parse_dates={'mydatetime': ['date', 'time']})
df['mydatetime'] = pd.to_datetime(df['mydatetime'], exact=True, cache=True, format='%Y-%m-%d %H:%M:%S')
# For a DateTimeIndex
df = pd.read_csv(infile, parse_dates={'mydatetime': ['date', 'time']}, index_col='mydatetime')
df.index = pd.to_datetime(df.index, exact=True, cache=True, format='%Y-%m-%d %H:%M:%S')
# For a MultiIndex
df = pd.read_csv(infile, parse_dates={'mydatetime': ['date', 'time']}, index_col=['mydatetime', 'num'])
idx_mydatetime = df.index.get_level_values(0)
idx_num = df.index.get_level_values(1)
idx_mydatetime = pd.to_datetime(idx_mydatetime, exact=True, cache=True, format='%Y-%m-%d %H:%M:%S')
df.index = pd.MultiIndex.from_arrays([idx_mydatetime, idx_num])
For my use case on a file with 200k rows (one timestamp per row), that cut down processing time from about a minute to less than a second.
Upvotes: 15
Reputation: 5191
pd.read_csv('CGMData.csv', parse_dates=['Date', 'Time'])
Resulted Columns
- if want to rename the new column name then pass as dictionary as show in below example and the new column name will be the key name,
- if pass as list of column, new column name will be concate of column name passed in the list separated by _ e.g Date_Time
# parse_dates={'given_name': ['Date', 'Time']}
pd.read_csv("InsulinData.csv",low_memory=False,
parse_dates=[['Date', 'Time']])
pd.read_csv("InsulinData.csv",low_memory=False,
parse_dates={'date_time': ['Date', 'Time']})
pd.read_csv("InsulinData.csv",low_memory=False,
parse_dates=[['Date', 'Time']], keep_date_col=True)
parser = lambda x: pd.to_datetime(x, format='%Y-%m-%d %H:%M:%S')
pd.read_csv('path', date_parser=parser, parse_dates=['date', 'time'])
Upvotes: 4
Reputation: 41
Yes, this code works like breeze. Here index 0 refers to the index of the date column.
df = pd.read_csv(filepath, parse_dates=[0], infer_datetime_format = True)
Upvotes: 1
Reputation: 4515
Perhaps the pandas interface has changed since @Rutger answered, but in the version I'm using (0.15.2), the date_parser
function receives a list of dates instead of a single value. In this case, his code should be updated like so:
from datetime import datetime
import pandas as pd
dateparse = lambda dates: [datetime.strptime(d, '%Y-%m-%d %H:%M:%S') for d in dates]
df = pd.read_csv('test.dat', parse_dates=['datetime'], date_parser=dateparse)
Since the original question asker said he wants dates and the dates are in 2013-6-4
format, the dateparse
function should really be:
dateparse = lambda dates: [datetime.strptime(d, '%Y-%m-%d').date() for d in dates]
Upvotes: 34
Reputation: 752
No, there is no way in pandas to automatically recognize date columns.
Pandas does a poor job at type inference. It basically puts most columns as the generic object
type, unless you manually work around it eg. using the abovementioned parse_dates
parameter.
If you want to automatically detect columns types, you'd have to use a separate data profiling tool, eg. visions, and then cast or feed the inferred types back into your DataFrame
constructor (eg. for dates and from_csv
, using the parse_dates
parameter).
Upvotes: 0
Reputation: 17834
You can use the parameter date_parser
with a function for converting a sequence of string columns to an array of datetime instances:
parser = lambda x: pd.to_datetime(x, format='%Y-%m-%d %H:%M:%S')
pd.read_csv('path', date_parser=parser, parse_dates=['date_col1', 'date_col2'])
Upvotes: 1
Reputation: 64443
You should add parse_dates=True
, or parse_dates=['column name']
when reading, thats usually enough to magically parse it. But there are always weird formats which need to be defined manually. In such a case you can also add a date parser function, which is the most flexible way possible.
Suppose you have a column 'datetime' with your string, then:
from datetime import datetime
dateparse = lambda x: datetime.strptime(x, '%Y-%m-%d %H:%M:%S')
df = pd.read_csv(infile, parse_dates=['datetime'], date_parser=dateparse)
This way you can even combine multiple columns into a single datetime column, this merges a 'date' and a 'time' column into a single 'datetime' column:
dateparse = lambda x: datetime.strptime(x, '%Y-%m-%d %H:%M:%S')
df = pd.read_csv(infile, parse_dates={'datetime': ['date', 'time']}, date_parser=dateparse)
You can find directives (i.e. the letters to be used for different formats) for strptime
and strftime
in this page.
Upvotes: 498
Reputation: 4593
While loading csv file contain date column.We have two approach to to make pandas to recognize date column i.e
Pandas explicit recognize the format by arg date_parser=mydateparser
Pandas implicit recognize the format by agr infer_datetime_format=True
Some of the date column data
01/01/18
01/02/18
Here we don't know the first two things It may be month or day. So in this case we have to use Method 1:- Explicit pass the format
mydateparser = lambda x: pd.datetime.strptime(x, "%m/%d/%y")
df = pd.read_csv(file_name, parse_dates=['date_col_name'],
date_parser=mydateparser)
Method 2:- Implicit or Automatically recognize the format
df = pd.read_csv(file_name, parse_dates=[date_col_name],infer_datetime_format=True)
Upvotes: 4
Reputation: 34026
If performance matters to you make sure you time:
import sys
import timeit
import pandas as pd
print('Python %s on %s' % (sys.version, sys.platform))
print('Pandas version %s' % pd.__version__)
repeat = 3
numbers = 100
def time(statement, _setup=None):
print (min(
timeit.Timer(statement, setup=_setup or setup).repeat(
repeat, numbers)))
print("Format %m/%d/%y")
setup = """import pandas as pd
import io
data = io.StringIO('''\
ProductCode,Date
''' + '''\
x1,07/29/15
x2,07/29/15
x3,07/29/15
x4,07/30/15
x5,07/29/15
x6,07/29/15
x7,07/29/15
y7,08/05/15
x8,08/05/15
z3,08/05/15
''' * 100)"""
time('pd.read_csv(data); data.seek(0)')
time('pd.read_csv(data, parse_dates=["Date"]); data.seek(0)')
time('pd.read_csv(data, parse_dates=["Date"],'
'infer_datetime_format=True); data.seek(0)')
time('pd.read_csv(data, parse_dates=["Date"],'
'date_parser=lambda x: pd.datetime.strptime(x, "%m/%d/%y")); data.seek(0)')
print("Format %Y-%m-%d %H:%M:%S")
setup = """import pandas as pd
import io
data = io.StringIO('''\
ProductCode,Date
''' + '''\
x1,2016-10-15 00:00:43
x2,2016-10-15 00:00:56
x3,2016-10-15 00:00:56
x4,2016-10-15 00:00:12
x5,2016-10-15 00:00:34
x6,2016-10-15 00:00:55
x7,2016-10-15 00:00:06
y7,2016-10-15 00:00:01
x8,2016-10-15 00:00:00
z3,2016-10-15 00:00:02
''' * 1000)"""
time('pd.read_csv(data); data.seek(0)')
time('pd.read_csv(data, parse_dates=["Date"]); data.seek(0)')
time('pd.read_csv(data, parse_dates=["Date"],'
'infer_datetime_format=True); data.seek(0)')
time('pd.read_csv(data, parse_dates=["Date"],'
'date_parser=lambda x: pd.datetime.strptime(x, "%Y-%m-%d %H:%M:%S")); data.seek(0)')
prints:
Python 3.7.1 (v3.7.1:260ec2c36a, Oct 20 2018, 03:13:28)
[Clang 6.0 (clang-600.0.57)] on darwin
Pandas version 0.23.4
Format %m/%d/%y
0.19123052499999993
8.20691274
8.143124389
1.2384357139999977
Format %Y-%m-%d %H:%M:%S
0.5238807110000039
0.9202787830000005
0.9832778819999959
12.002349824999996
So with iso8601-formatted date (%Y-%m-%d %H:%M:%S
is apparently an iso8601-formatted date, I guess the T can be dropped and replaced by a space) you should not specify infer_datetime_format
(which does not make a difference with more common ones either apparently) and passing your own parser in just cripples performance. On the other hand, date_parser
does make a difference with not so standard day formats. Be sure to time before you optimize, as usual.
Upvotes: 1
Reputation: 604
When merging two columns into a single datetime column, the accepted answer generates an error (pandas version 0.20.3), since the columns are sent to the date_parser function separately.
The following works:
def dateparse(d,t):
dt = d + " " + t
return pd.datetime.strptime(dt, '%d/%m/%Y %H:%M:%S')
df = pd.read_csv(infile, parse_dates={'datetime': ['date', 'time']}, date_parser=dateparse)
Upvotes: 14
Reputation: 149823
You could use pandas.to_datetime()
as recommended in the documentation for pandas.read_csv()
:
If a column or index contains an unparseable date, the entire column or index will be returned unaltered as an object data type. For non-standard datetime parsing, use
pd.to_datetime
afterpd.read_csv
.
Demo:
>>> D = {'date': '2013-6-4'}
>>> df = pd.DataFrame(D, index=[0])
>>> df
date
0 2013-6-4
>>> df.dtypes
date object
dtype: object
>>> df['date'] = pd.to_datetime(df.date, format='%Y-%m-%d')
>>> df
date
0 2013-06-04
>>> df.dtypes
date datetime64[ns]
dtype: object
Upvotes: 22
Reputation: 1175
Yes - according to the pandas.read_csv
documentation:
Note: A fast-path exists for iso8601-formatted dates.
So if your csv has a column named datetime
and the dates looks like 2013-01-01T01:01
for example, running this will make pandas (I'm on v0.19.2) pick up the date and time automatically:
df = pd.read_csv('test.csv', parse_dates=['datetime'])
Note that you need to explicitly pass parse_dates
, it doesn't work without.
Verify with:
df.dtypes
You should see the datatype of the column is datetime64[ns]
Upvotes: 9
Reputation: 8108
pandas read_csv method is great for parsing dates. Complete documentation at http://pandas.pydata.org/pandas-docs/stable/generated/pandas.io.parsers.read_csv.html
you can even have the different date parts in different columns and pass the parameter:
parse_dates : boolean, list of ints or names, list of lists, or dict
If True -> try parsing the index. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a
separate date column. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date
column. {‘foo’ : [1, 3]} -> parse columns 1, 3 as date and call result ‘foo’
The default sensing of dates works great, but it seems to be biased towards north american Date formats. If you live elsewhere you might occasionally be caught by the results. As far as I can remember 1/6/2000 means 6 January in the USA as opposed to 1 Jun where I live. It is smart enough to swing them around if dates like 23/6/2000 are used. Probably safer to stay with YYYYMMDD variations of date though. Apologies to pandas developers,here but i have not tested it with local dates recently.
you can use the date_parser parameter to pass a function to convert your format.
date_parser : function
Function to use for converting a sequence of string columns to an array of datetime
instances. The default uses dateutil.parser.parser to do the conversion.
Upvotes: 10