Reputation: 8880
Another novice pandas question. I want to convert a DataFrame to a dictionary, but in a way different from what is offered by the DataFrame.to_dict()
function. Explanation by example:
df = pd.DataFrame({'co':['DE','DE','FR','FR'],
'tp':['Lake','Forest','Lake','Forest'],
'area':[10,20,30,40],
'count':[7,5,2,3]})
df = df.set_index(['co','tp'])
Before:
area count
co tp
DE Lake 10 7
Forest 20 5
FR Lake 30 2
Forest 40 3
After:
{('DE', 'Lake', 'area'): 10,
('DE', 'Lake', 'count'): 7,
('DE', 'Forest', 'area'): 20,
...
('FR', 'Forest', 'count'): 3 }
The dict keys should be tuples consisting of the index row + column title, while the dict values should be the individual DataFrame values. For the example above, I managed to find this expression:
after = {(r[0],r[1],c):df.ix[r,c] for c in df.columns for r in df.index}
How can I generalize this code to work for MultiIndices with N levels (instead of 2)?
Answer
Thanks to DSM's answer, I found that I actually just need to use tuple concatenation r+(c,)
and my 2-dimensional loop above becomes N-dimensional:
after = {r + (c,): df.ix[r,c] for c in df.columns for r in df.index}
Upvotes: 3
Views: 5599
Reputation: 765
df.stack().to_dict()
out:
{('DE', 'Lake', 'area'): 10,
('DE', 'Lake', 'count'): 7,
('DE', 'Forest', 'area'): 20,
('DE', 'Forest', 'count'): 5,
('FR', 'Lake', 'area'): 30,
('FR', 'Lake', 'count'): 2,
('FR', 'Forest', 'area'): 40,
('FR', 'Forest', 'count'): 3}
Upvotes: 3
Reputation: 353019
How about:
>>> df
area count
co tp
DE Lake 10 7
Forest 20 5
FR Lake 30 2
Forest 40 3
>>> after = {r + (k,): v for r, kv in df.iterrows() for k,v in kv.to_dict().items()}
>>> import pprint
>>> pprint.pprint(after)
{('DE', 'Forest', 'area'): 20,
('DE', 'Forest', 'count'): 5,
('DE', 'Lake', 'area'): 10,
('DE', 'Lake', 'count'): 7,
('FR', 'Forest', 'area'): 40,
('FR', 'Forest', 'count'): 3,
('FR', 'Lake', 'area'): 30,
('FR', 'Lake', 'count'): 2}
Upvotes: 7